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Abstract— Minimum variance state estimation for linear
time-invariant systems with Gaussian state and measurement
noise is achieved by the Kalman filter. This estimator is known
to be robust to model uncertainties, however, it relies upon the
knowledge of the measurement covariance. This is a serious
limitation when measurements noise covariances change unpre-
dictably because of external events, such as changes of lighting
conditions, presence of smoke/fog, external magnetic fields, etc.
In this paper, we consider and analyze a three stage estimation
algorithm comprising of: 1) Covariance estimation, estimating
the accuracy of each sensor; 2) Measurement gating, rejecting
measurements until a new accuracy estimate is provided; and 3)
the Kalman filter, estimating the state and its error covariance.

The main results of this paper are estimation error character-
izations of the proposed three stage filter when the measurement
noise covariances undergo sudden and unknown changes. We
consider both the single and multi-sensor scenarios and provide
a complete analysis for scalar systems along with key insights
and preliminary results for the vector setting.

Index Terms— Adaptive Kalman Filtering, Outlier rejection,
Performance Analysis, Multi-sensor Fusion.

I. INTRODUCTION

The recent years have witnessed a steady increase in the
use of sensors, actuators and computing devices within a
large number of physical systems, such as cars, airplanes,
power plants, buildings. In particular, new and more complex
sensors, such as video cameras, LIDAR, infrared arrays,
are being installed in such systems to increase their level
of automation, security and safety. The properties of such
sensors are typically difficult to characterize as they are
intimately dependent on the pre-processing algorithms that
extract higher level features from raw data. For example, a
video-based tracking algorithm will provide the position of
people with an accuracy that strongly depends on external
factors such as lighting conditions, the type and direction
of motion of the people, weather conditions (if outside), to
name a few. These type of events can significantly decrease
the performance of such complex sensors, considering that
the intensity and occurrence of such events is not known in
advance. Most of the estimation algorithms rely heavily upon
the knowledge of the sensor model to provide acceptable
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estimates, but it is characterizing the measurement statistics
in all possible scenarios is not achievable.

Various methodologies have been developed over the past
decades to deal with these types of situations. However, to
the best of the authors’ knowledge, no formal analysis is
available to predict their behavior in the context of accuracy
and degree of robustness to changes.

In this paper, we consider a three stage estimation algo-
rithm capable to deal with sudden changes in the sensors’
accuracy and we provide a theoretical analysis of its perfor-
mance. Such an algorithm adds two extra components around
any existing (legacy) filter (e.g. Kalman filter, Extended
Kalman Filter, Unscented Kalman Filter, etc.) enabling the
use of complex sensors in highly unstructured and changing
environments, even if such changes occur in an unknown
fashion. The use of a legacy filter at the core of the estimation
algorithm, although it might appear as a limiting factor,
it is very desirable in practice as it enables “retrofitting”
existing systems as well as faster and cheaper integration.
In this paper, we focus on characterizing the mean-squared
estimation error, after a sensor changes its accuracy (or
becomes faulty). Furthermore, we characterize the degree of
robustness of the proposed scheme, namely the minimum
number of sensors that need to maintain a nominal operation
whenever an unknown change occurs, so that the mean-
squared error is within a certain desired threshold.

A. Related Work

One of the key research areas that deal with varying sensor
characteristics during estimation is Adaptive Kalman Filter-
ing. Seminal works (cf. [1], [2]) propose online techniques
to determine the measurement and process noise covariance
matrices. In the case of linear systems with Gaussian noise,
these techniques rely on the whiteness property of the
innovations sequence for the filter to perform optimally. The
work [3] presents a self-tuning Kalman filter via stochastic
approximations. However, stochastic approximations tend to
be slow to converge and require a good initial guess. More
recently, heuristics based on sample averages have been
proposed in the literature, cf. [4], [5]. These techniques
have been demonstrated to work even for non-linear systems
involving the Extended Kalman Filter (see [6], [7]). In [8]
and in [9], the authors have presented a fuzzy neural network
in conjunction with adaptive extended Kalman Filter to
enhance the learning of the measurement noise covariance.
In [10], the authors demonstrate this technique on a low-cost
INS/GPS system and show improvement in the navigation
estimation accuracy. In [11], the authors integrate a fuzzy



version of the outlier detection technique used in this paper
with the adaptive measurement error covariance estimation
framework and demonstrate results on experimental data
from autonomous underwater vehicle trials.

Another key research area related to this work is outlier
rejection. One of the most popular techniques in the area
of estimation to detect and reject erroneous measurements
is gating, known alternatively as the chi-squared test, de-
scribed in [12], [13], [14]. This technique is widely used
in performing data association, as shown in [15], [16].
From the performance point-of-view, [17] derives a modified
Riccati equation that approximately quantifies the depen-
dence of the estimation error covariance on parameters such
as gate thresholds and probability of false alarms. Given
a set of measurements, a desired false-alarm probability,
and a signal-to-noise ratio, the celebrated Neyman-Pearson
detector has been known to minimize the false dismissal
probability ([18]). In the case when the measurement signal
is much weaker than the noise, locally optimal detectors
have been proposed in [19]. More recently, simultaneous
estimation of state and fault statistics for linear time-varying
stochastic systems has been reported in [20].

B. Contributions

We consider the problem of estimating the state of a
discrete-time, linear time-invariant dynamical system when
the accuracy of one or more sensors changes abruptly and
in an unknown fashion at a certain time instant of operation.
The performance metric of interest is the mean-squared
estimation error. Particularly, for the case of a scalar state,
and for a single sensor, we provide analytical bounds on
the expected estimation error covariance, which show a
great improvement over the baseline case, i.e., the standard
Kalman Filter without any outlier detection scheme and with
the wrong sensor covariance. This bound enables estimation
of the settling time, i.e., the time taken to reduce average
estimation error to within a desired threshold. In the case
of multiple sensors, we are able to compute reasonably tight
bounds on the minimum number of working sensors needed
at each time step to guarantee a pre-specified performance
under changes of accuracy of the remaining sensors. Analyt-
ical bounds are validated via numerical simulation. Finally,
we provide key insights and some preliminary results on the
extension of the multi-sensor problem to the vector case.

Although the methodology (Covariance Estimation, Gat-
ing and Kalman Filter) considered in this paper are well es-
tablished in literature, as well as some of their combinations
(see, e.g., [10], [11]), we believe that our contribution lies
in providing the first attempt to analyze this framework for
the linear time-invariant case. We acknowledge the results
are somehow preliminary, as related to a scalar system when
only one type of event occurs, i.e. sensors can only change
their accuracy from a nominal value to a “worst” accuracy,
however we believe they are instrumental to understand the
more general case and they provide interesting fundamental
limitations for the general adaptive filtering scheme we
consider. As it will be clear in the following, the analysis of
this type of systems is rather complex as the measurement

Fig. 1. Multiple failures/changes of accuracy among sensors.

gating process makes the overall filter a state dependent
stochastic switching system.

C. Organization of this paper

This paper is organized as follows: Section II describes the
mathematical formulation of the problem and the technical
approach adopted. Section III presents the analysis for the
single sensor case for scalar systems. Section IV presents
the analysis for the multiple sensor case for scalar systems,
and also key insights into the vector case. Finally, Section V
includes our conclusions and directions for future work. Due
to lack of space, the proofs of all results have been included
in the online technical report [21].

II. PROBLEM SET-UP AND TECHNICAL APPROACH

In this section, we present the mathematical formulation
of the problem and the technical approach.

A. Problem Formulation

Consider the discrete evolution of a linear time-invariant
dynamical system given by the following equations:

xt+1 = Axt + νt, (1)
yj,t = Cjxt + vj,t , ∀j ∈ {1, . . . ,m} , (2)

where xt ∈ Rnx is the state of the system, yt ∈ Rny is
the measurement vector, νt ∼ N (0, Q) and vt ∼ N (0, Rt)
are zero mean, Gaussian random vectors at each time. In
this set-up, the entries of the covariance matrix Rt can vary
with time, however, we will assume that its dynamics are not
known by the filter. The measurement covariance matrix for
the sensors has a nominal value Rj,t := Rnom, and at time
t = 0, the covariance of some of the m sensors increases
to a value of at most η times, where η > 1 is the accuracy
change parameter. Although the analysis is presented for the
case when all sensors have the same accuracy, it can be easily
extended to the case of different accuracies for each sensor.

We consider a Kalman Filter as the core estimator, aug-
mented with methods to detect measurements whose statis-
tics have changed and to estimate the new measurement co-
variance. The goal of this paper is to analyze the performance
of this estimation framework when applied to a system
governed by (1) and (2). The measure of performance is the
estimation error covariance Pt := E[(xt− x̂t)(xt− x̂t)′|Yt],
where Yt is the set of all measurements up to time t and



Fig. 2. Illustrating Measurement gating. The shaded region, centered at
CAx̂t−1, corresponds to the gate with threshold equal to β < 1. The
measurement y(1)t passes the gating test if it lies inside the shaded region.
Otherwise, the measurement fails the test, see measurement y(2)t .

x̂t := E[xt|Yt] is the state estimate at time t. We address
the following two cases:

1) Single sensor case: Given a change of accuracy of the
sensor by a factor of η (this is feasible in the scalar
case), determine the settling time, i.e., time taken for
the system to reduce the (average) estimation error
covariance to within a given ε > 0.

2) Multi-sensors case: Given a requirement of the (aver-
age) estimation error covariance to be bounded by ε >
0, determine the minimum number of sensors mw that
must retain their nominal accuracy.

As the dynamics of the three stage estimator considered
here are very complex to be analyzed in the general case,
in this paper we focus on the case when the state x as well
as the measurements yj are scalars, and provide some initial
comments on the vector case, which will be the topic of
further research.

B. Technical Approach
The proposed methodology is summarized in Algorithm 1.

To simplify the presentation, the algorithm is defined for the
case when the change of sensor accuracy occurs at time
t = 0. The first step consists of performing covariance
estimation [7]. The method we adopt requires setting an
estimation window w > 1. Up to time t ≤ w, the estimate
of R̂t is the nominal value, and for t > w, one computes
the moving average of the covariance of innovations yτ −
CAx̂τ−1 in the interval τ ∈ [t−w, t− 1], and subtracts the
term C(APt−1A

′ + Q)C ′ from it. This equation is based
upon the principle that the innovation sequence is white for
an optimally functioning Kalman filter. Therefore, in the limit
as w → +∞, and if the filter is operating optimally, the
equation becomes exact.

The second step is to perform measurement gating [14],
shown in Figure 2. At a time instant t, one has the predicted
value of the measurement CAx̂t−1, the covariance of which
equals C(APt−1A

′ +Q)C ′ + R̂j,t. Then, the true measure-
ment yt will be in the following region

Vt = {yt : (yt−CAx̂t−1)′(C(APt−1A
′+Q)C ′+R̂j,t)

−1

(yt − CAx̂t−1) ≤ β2} (3)

with a probability determined by the gate threshold β (some-
times referred to as the “number of sigmas”). The region

Algorithm 1 Covariance estimation and Measurement gating

Input: w, β, {x̂k}t−wk=t−1, {yj,k}
t−w
k=t , Pt−1, R̂j,0 = Rj,nom.

1) Measurement Gating:

γj,t =


1 if rj(t, 0)(Cj(APt−1A

′ +Q)C ′j+

R̂j,t−1)−1rj(t, 0)′ ≤ β ,
0 otherwise.

2) Multi-sensor Fusion Kalman Filter:

P−1
t = (APt−1A

′ +Q)−1 +

m∑
j=1

γj,tC
′
jR̂
−1
j,t−1Cj , (4)

x̂t = Pt((APt−1A
′ +Q)−1Ax̂t−1 +

m∑
j=1

γj,tC
′
jR̂
−1
j,t−1yj,t).

3) Estimate sensor accuracy:
Let rj(k) = yj,k − Cj x̂k

R̂j,t =

{
Rj,nom if t ≤ w
1
w

∑t
k=t−w+1 rj(k)rj(k)′ + CjPtC

′
j o.w.

(5)

Output: x̂t, Pt, R̂j,t

defined by (3) is called gate or validation region, where
the semi-axes of this ellipsoid are the square roots of the
eigenvalues of β2(C(APt−1A

′ +Q)C ′ + R̂j,t).
The third and final step comprises of a multi-sensor fusion

for a Kalman filter. The covariance of the estimation error
and the estimate are computed using the inverse covariance
form [23], as shown in (4). This methodology is illustrated
in Figure 3 for the case of a single sensor.

The distinguishing feature of our set-up, when compared
to the works in the area of estimation over packet dropping
links (e.g. see [22]) is that their formulation assumes that
the random variables γi’s are generated independently out
of a given distribution (typically Bernoulli) at each time.
In our framework, the random variables γi’s are clearly
dependent on x̂ and P . Furthermore, we aim at characterizing
performance metrics such as settling time, and minimum
sensor suite design. Similar performance computation has
been performed in [17] via a modified approximate Riccati
equation. However, their work does not consider the above
metrics which we characterize.

III. SCALAR CASE: SINGLE SENSOR

In this section, we present analytical results for the case
when there is only one scalar sensor measurement yt. In the
following, we will denote scalars with lower case letters.

Let us consider the following scenario: at time t = 0, the
estimation error covariance is p0 > 0, and the nominal mea-
surement error covariance is rnom. At t = 1, the measurement
error covariance becomes equal to ηrnom, for some η > 1.
Note that since the filter does not run optimally (due to the
change in the value of r), the estimation error covariance is
no longer given by p. The filter would run optimally only



Fig. 3. Illustration of Algorithm 1 on the single sensor case.

when the R-estimation step in Algorithm 1 converges to the
true value. Therefore, we introduce the following assumption
to make the analysis tractable.

Assumption III.1 (Finite time convergence of R-estimation).
The R-estimation procedure in (5) converges in at most w
time steps, i.e., after time t = w, r̂t = ηrnom.

While this assumption may appear restrictive, it has been
observed to hold reasonably consistently in simulation. This
assumption makes Algorithm 1 equivalent to decoupling the
R-estimation step from the rest of the Algorithm. Although
the algorithm has been presented such that the accuracy
change occurs at time t = 0, one can easily generalize
the statement and the analysis to include the case when the
accuracy change occurs at a different time ts > 0. The only
change is that in the time interval [ts, ts+w], the filter works
with the nominal covariance, i.e., r̂t = rnom. This general
case has been implemented in the simulation result shown
in Figure 4.

To solve the single sensor problem, it suffices to determine
an upper bound on the estimation error covariance, i.e., E[e2

t ],
where et := x̂t − xt. Such a bound on the estimation error
covariance is provided in the following result.

Theorem III.1 (Single sensor case). Suppose that Algo-
rithm 1 is applied to an open-loop stable (i.e., a < 1 ) sys-
tem (1) and (2) with nx = ny = 1. Under Assumption III.1,

1) If t ≤ w, where w is the estimation window, then

E[e2
t ] ≤

q + λmaxβ
2q/(1− a2)

1− a2
,

where

λmax := erf
( β√

2

√
q/(1− a2) + σ

q + ησ

)
,

and the expectation is with respect to the random
variables γt, wt, vt, ∀t ∈ {1, 2, . . . , w}.

2) For t > w,

E[e2
t ] ≤ −ζ+ ( d̄−ζc̄ζc̄+ā )t−w

ζ + p̄w
+

c̄

ζc̄+ ā

1− (d̄−ζc̄)t−w

(ζc̄+ā)t−w

1− (d̄−ζc̄)
(ζc̄+ā)

−1

,

where

ā := a2 , b̄ := q , c̄ := a2/(ησ),

d̄ := q/(ησ) + 1 ,

ζ := (d̄− ā+
√

(d̄− ā)2 + 4b̄c̄)/(2c̄),

p̄w := (q + λmaxβ
2q/(1− a2))/(1− a2).

3) In the limit as t→ +∞,

lim
t→∞

E[e2
t ] ≤

√
(d̄− ā)2 + 4b̄c̄− (d̄− ā)

2c̄
.

This result immediately provides us with the following
bound on the settling time Ts, which is the time interval
such that E[e2

w+Ts
] ≤ ε, for a specified feasible ε.

Corollary III.1 (Settling time). Under Assumption III.1,
given an ε > (

√
(d̄− ā)2 + 4b̄c̄− (d̄− ā))/(2c̄), the steady

state bound in case 3) of Theorem III.1, the settling time is
at most

Ts ≤ ln
( ζ + ε

ζ + p̄w

(
1 +

c̄√
(d̄− ā)2 + 4b̄c̄

))/
ln
(ζc̄+ ā

d̄− ζc̄

)
.

This result follows by simply setting the right hand side
of statement 2) of Theorem III.1 to be less than ε.

We simulated the scalar system with the parameters a =
0.9, c = 1, w = 30, q = rnom = 1, η = 1000, and
with the initial estimation error covariance p0 equal to the
solution of the discrete time Algebraic Riccati Equation for
the nominal covariance of the sensor. At time t = 60,
the sensor changes accuracy. We compare the theoretical
bounds from Theorem III.1 with numerically determined
error covariance averaged over 100 Monte Carlo runs. The
result is summarized in Figure 4.

The numerically determined curve does not always lie
below the theoretical bound, and the reason is that Theo-
rem III.1 holds under Assumption III.1. While we observe
that the R-estimation step almost converges, the value of R
is not exactly a constant and shows minor fluctuations with
time. Nevertheless, the theoretical bound serves as a very
good approximation to the numerical curve.

IV. SCALAR CASE: MULTIPLE SENSORS

In this section, we consider the case of multiple sensors
and a scalar system. For ease of presentation, we will con-
sider the case of identical sensors which, with an extra level
of book-keeping, can be easily extended to non-identical
sensor characteristics. We address the case that for time
t > 0, at least mw ≥ 1 sensors retain their nominal
characteristics, while the error covariance of at most m−mw

sensors may increase by a factor of η > 1. Even for an open-
loop unstable system, due to sensor redundancy, the filter will
continue to remain stable. However, the estimation accuracy
will now be governed by mw.

Without any loss of generality, let us assume that the first
mw sensors are in working condition. After a time given by
the R-estimation window w, the values of r̂j,t for each of the
m−mw sensors are expected to be reasonably close to ηrnom,



Fig. 4. Time evolution of the expected estimation error covariance. The
change of accuracy occurs at time t = 60. The theoretical upper bound is
given by Theorem III.1 and the numerically determined evolution is given
by the black solid line.

for a sufficiently large w. Therefore, for ease of theoretical
computation, we introduce the following assumption.

Assumption IV.1 (Multi-sensor R-estimation). For each of
the m − mw sensors, the R-estimation procedure in (5)
converges in at most w time steps, i.e., after time t = w,
r̂j,t = ηrnom,∀j ∈ {mw + 1, . . . ,m}.

In our analysis of Algorithm 1, we characterize upper
and lower bounds on the estimation error covariance and
we use them to derive the minimum number of sensors
needed to guarantee a desired level of performance, i.e.,
given an ε > 0, the steady state estimation error covariance
is at most ε. For a lower bound on the estimation error,
in light of Assumption IV.1, we will consider the best-case
scenario in which after the time window of w, the filter
learns the changed accuracy ησ of the m−mw sensors. For
the corresponding upper bound, we will consider the worst-
case scenario in which the sensors that changed accuracy
are simply gated out, i.e., ignored.

Then, the following result can be established.

Theorem IV.1 (Multiple sensors case). Under Assump-
tion IV.1,√

(kq + σ − σa2)2 + 4σqka2 − (kq + σ − σa2)

2ka2

≤ lim
t→+∞

pt ≤√
(mwq + σ − σa2)2 + 4σqmwa2 − (mwq + σ − σa2)

2mwa2
,

where mw ≥ 1 is the number of sensors retaining their
accuracy, m is the total number of sensors and k := mw +
(m−mw)/η.

We simulated the system with the parameters a =
0.9, cj = 1, w = 30, q = 1, rnom = 0.1, η = 5,m = 10.
We numerically determine the estimation error covariance

resulting out of Algorithm 1 in its entirety in Figure 5. The
numerical value of the estimation error has been averaged
over 20 Monte Carlo trials. A comparison with the analytical
bounds from Theorem IV.1 shows that while the lower bound
condition is obeyed at all instances, due to the fluctuations in
the covariance estimation of the working sensors, the upper
bound is not always valid.

Fig. 5. Evolution of the estimation error covariance with the number
of working sensors mw when applying Algorithm 1 in its entirety in the
multiple sensors case.

To have a fair comparison with Theorem IV.1, we per-
formed another simulation in which the covariances of work-
ing sensors were passed exactly to the filter while those of
the faulty ones were learned using the covariance estimation
step. The results are reported in Figure 6. From this figure,
we can see that the empirical value of the estimation error
covariance lies between the upper and lower bounds, thus
verifying our analysis. In fact, the gap with the theoretical
lower bound reduces as the number of working sensors
increase, as is expected. Note also that the bounds are not
very conservative and therefore, are useful to predict the
performance of the proposed scheme to multiple changes
of accuracy of the sensors.

Remark IV.1 (Non-identical sensors). The analysis in this
section can be extended to the case of non-identical sensors.
In that setting, the performance, in general, will depend on
the type (or the accuracy) of the nominally working sensors
rather than their number mw. Further, the design problem
now becomes conceptually similar to a knapsack problem in
combinatorial optimization [24], in which the goal will be to
select the best set of sensors that satisfy a given performance
requirement.

Remark IV.2 (Extension to the vector case). The analysis
in this section can be extended to the vector case by consid-
ering the maximum eigenvalue λmax(Pt) as the performance



Fig. 6. Evolution of the estimation error covariance when the sensor
covariances of the working sensors are known exactly by the filter in the
multiple sensors case.

metric. We can show (cf. [21]) that

λmax(Pt) =

λ2
max(A)λmax(Pt−1) + λmax(Q)

λmin(
∑mw

j=1 Cj
′R−1
j Cj)(λ2

max(A)λmax(Pt−1) + λmax(Q)) + 1
.

Substituting zt := λmax(Pt), we obtain a linear rational
recurrence in zt, which has identical structure as in the
scalar case, and therefore, a similar bound may be computed.
This bound becomes useful when λmin(

∑mw

j=1 Cj
′R−1
j Cj) >

0, which is equivalent to having every mode of the system
being observed by some sensor at each time.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we analyzed a framework comprising of a
covariance estimator and an outlier rejection module, using
the measurement gating, “wrapped around” a Kalman filter.
This was analyzed for a linear time invariant system when
sensors’ accuracy varies in an unknown fashion. We pre-
sented analytical bounds on the evolution of the estimation
error covariance for the scalar system for both the single
sensor and the multiple sensors cases. In the multiple sensors
case, our bounds provide a design criterion in the sense of
the minimum number of reliable sensors needed in order
to satisfy a performance requirement, i.e., the estimation
error to be less than a specified threshold. We also provided
key insights in analyzing the vector case. Simulation results
verifying all of the analytical bounds were also presented.

An immediate future direction is to derive a complete
characterization of the vector case in the non-linear setting
with the Extended Kalman Filter as the core estimator. Also,
of interest, is the extension to situations where the accuracy
of sensors can change at multiple time instances.
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