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Abstract— The main contribution of this paper is a novel
planning algorithm that, starting from a probabilistic roadmap,
efficiently constructs an expanded graph used to search for the
optimal solution of a multi-objective problem. The primary cost
is the shortest path from start to goal and the secondary cost
is related to the state estimation error covariance. This needs
to be optimized as we assume the navigation to be in a GPS
denied environment. The proposed algorithm is efficient as it
relies on a scalar metric, related to the largest eigenvalue of
the error covariance, and adaptively quantizes the secondary
cost, yielding a graph whose number of vertices and edges
provides a good tradeoff between optimality and computational
complexity. Numerical examples show the advantage of the
proposed approach compared to methods where the expanded
graph is built by quantizing the secondary cost uniformly.

Index Terms— Motion Planning; Multi-objective Optimiza-
tion; GPS-denied Localization; Autonomous Systems.

I. INTRODUCTION

Autonomous missions in complex and partially known en-
vironments require the generation of trajectories that not only
enable safe navigation around obstacles, but also minimize
multiple objectives. In this paper, we focus on navigation
in GPS denied environments, and thus requiring the state
estimation error to be bounded is crucial to avoiding paths
that will lead to large errors, place the mission vehicle at risk
of getting lost, and jeopardize the success of the mission. In
the framework we propose, we assume that the environment
is known (or at least partially known) and that sensor models
are available so that their response to the environment model
can be obtained. Of course, the quality of the chosen path
will strongly depend on the quality of these “strong” priors.
Given the large amount of Geographic Information Systems
databases available, e.g., Google maps, prior information is
generally very rich and goes well beyond just geometric
information about obstacles.

A natural approach to solve a multi-objective optimization
problem is to pose it as an optimization where a single
primary cost is optimized and other costs are treated as
constraints (secondary costs). In this paper, we will consider
the path length (or a function of the the path length, such
as fuel consumption or time-to-goal) as primary cost and the
estimation error as secondary cost. Given the wide-spread
use of Kalman filtering techniques, we will use a function
of the estimation error covariance as the secondary objective.

Navigation in GPS-denied environments has been a topic
of active research for the past two decades. Early works
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were focused solely on improving navigation estimation
accuracy, e.g., [1], [2]. More recently, various researchers
have been working on path planning under state estimation
uncertainty. One of the seminal works is the belief roadmap
(BRM) [3] which builds a probabilistic roadmap (PRM) [4]
in a robot’s state space, propagates beliefs over the roadmap
using an extended Kalman filter (EKF) [5], and plans a
path of minimum goal-state uncertainty. This approach has
been extended [6] to bias the PRM samples using a Sensory
Uncertainty Field (SUF) [7], which expresses the spatial
variation in sensor performance over the workspace. Rapidly-
exploring random belief trees (RRBTs) [8] use the EKF
to propagate belief states over a rapidly-exploring random
graph (RRG) [9], to find asymptotically optimal paths that
minimize goal-state uncertainty subject to chance constraints.
In [10], the authors propose an approach for planning in be-
lief space, based on differential dynamic programming which
relies on an initial guess computed using a rapidly-exploring
random tree (RRT). Compared to this body of work, our
paper introduces a novel method that trades computational
complexity (measured in terms of both, time and storage
space) with optimality, while leveraging the flexibility of
sample-based approaches.

Optimal planning under multiple objectives is a clas-
sic problem, and several approaches have been proposed
to explore the Pareto-front, i.e., the set of solutions that
yield the same optimal primary value. However, the main
impediment has been the high computational requirement.
For problems in which both objectives, the primary and the
secondary, are monotonic non-decreasing functions of the
vehicle state, a computationally efficient algorithm has been
recently proposed [11]. The approach is to represent the
underlying state space using a graph, compute the primary
and secondary objectives over edges of the graph, and search
efficiently over a larger-sized product graph. However, with
the estimation error covariance as the secondary objective,
the non-negativity assumption does not hold any longer, since
the existence of useful visual features will decrease the error
covariance over an edge. Additionally, the change in the error
covariance over an edge is a function of the covariance at
the source vertex of that edge, which introduces a history-
dependence to the problem. This calls for a new approach
which will need to trade-off accuracy in terms of the primary
cost for computational efficiency in computing a good path
that still meets the secondary objective constraint.

In this paper, we propose a methodology to obtain approx-
imate solutions to the multi-objective path planning problem
that is history-independent during the search over the product
graph. Our contributions are three-fold. First, using the max-



imum eigenvalue of the estimation error covariance matrix,
we derive a novel bound on its evolution given the underlying
graph (possibly the output of a sample based planning
algorithm such as PRM/PRM* or RRG [9]) and the sensing
information over the edges of the graph. We show how this
eigenvalue bound can be used to determine the secondary-
objective quantization of the product graph. Second, we
provide two algorithms; one based on uniform quantization
scheme, i.e., every vertex of the original graph has the same
number of copies in the product graph; a second based on
an adaptive quantization scheme in which every vertex is
replicated a different number of times depending upon the
increase/reduction in uncertainty when arriving at that vertex
in different ways. We formally establish that the secondary
cost over the path obtained with either algorithm meets a
hard constraint on the secondary objective. We also establish
the computational complexity of the algorithms. Third and
finally, we demonstrate the tradeoff between accuracy and
computational efficiency of the two algorithms on a simple
small-sized,on which we can compare against the globally
optimal solution, as well as a more complex example of path
planning over a given environment.

This paper is organized as follows. The problem formu-
lation is presented in Section II. The description of our
proposed approach along with the main technical results are
presented in Section III. The results of the application of our
algorithms on numerical examples is presented in Section IV.
Finally, concluding remarks along with directions for future
research are summarized in Section V.

II. PROBLEM FORMULATION

In this section, we describe how we model the vehicle mo-
tion, the environment and present the problem formulation.

A. Motion and Sensing Model

We consider a general model of an agent whose state
evolves as per a non-linear discrete-time dynamical system

x(t+ 1) = f(x(t),n(t)), (1)

where x ∈ Rnx is the state describing the system at time
t, f : Rnx × Rnn → Rnx describes the state transition map
of the system and n ∈ Rnn is the process noise. The agent
is equipped with m sensors in order to estimate the state x.
Sensors’ output is modeled as

yj(t) = hj(x(t),vj(t)), ∀j ∈ {1, . . . ,m}, (2)

where vj ∈ Rnj is the process noise of the j-th sensor and
h : Rnx × Rnj → Rnyj describes the relation between state
and measurement. We assume that the noise vectors n and vj
are independently generated zero mean Gaussian random
vectors.

In this work, we will make the following assumptions.
Assumption 2.1 (Consistency and Synchrony): 1)

The system is linearizable at each time instant t.
In other words, an Extended Kalman Filter (EKF)
provides a consistent estimate x̂t and the estimation
error covariance Pt of the filter is a measure of the
precision of the EKF.

2) The state estimate x̂t follows the nominal trajectory
for the vehicle.

3) The measurements from all sensors/sources are time
synchronized. �

The first two items of this assumption imply that we have a
reasonable nominal model for the motion of the vehicle, and
that there exists a control action that keeps the state estimate
x̂t close to the nominal trajectory (c.f. [3]). Our work is
concerned with the level of confidence measured through Pt
that we can obtain in our state estimate x̂t. The third item
from Assumption 2.1 allows for a compact representation of
our results, and may be relaxed to incorporate asynchrony
between measurements.

Under these assumptions, analogous to the Kalman Filter
case (see equations 185 and 186 in [12]), an EKF based
estimator of the state x can be written as:

P−1
t+1 = (FtPtF

′
t + Q)−1 +

m∑
j=1

γj,t+1H
′
jR
−1
j Hj , (3)

x̂t+1 = Pt+1

(
(FtPtF

′
t + Q)−1f(x̂t,0)+

+

m∑
j=1

γj,t+1H
′
jR
−1
j (yj(t+ 1)− hj(f(x̂t),0))

)
,

where x̂t is the state estimate, Pt is the expected error
covariance with respect to the process and sensor noise
terms, Ft is the linearization of f around (x̂t,0) and Hj

is the linearization of hj around (f(x̂t),0). The matrix Q is
the process noise covariance and the Rj is the measure-
ment noise covariance associated to the j-th sensor. The
variables γj,t+1 are binary, 0/1 variables that model the
absence/presence of the measurement provided by the j-th
sensor.

In this work, we will consider the maximum eigenvalue
of the error covariance matrix, λ̄(Pt), as the scalar metric
for capturing state estimate uncertainty. In the following,
we will denote with λ(A) and with λ̄(A) the minimum
and maximum eigenvalue of A, respectively, where A is
a positive definite/semi-definite matrix.

B. Environment Model

We model the environment E ⊂ Rnx as a directed graph
G(V,E), where V denotes a finite set of vertices and E =
V ×V ×{0, 1} denotes the set of edges. Here the extra {0, 1}
tag is required as we are working with directed graphs. Given
a pair of vertices i, j, denote an edge eij from i to j if it
exists. Two edges eij , ejk are said to be linked if both eij
and ejk exist. Let s, d ∈ V denote a start/destination pair of
vertices. A path from s to d is a collection of linked edges
πsd := {esi1 , ei1i2 , . . . , eind}. The collection of paths from
s to d is denoted as Psd.

Given a primary cost function, we assign a cost cij
corresponding to each edge eij . The cost of a path πsd is
defined as

C(πsd) :=
∑

eij∈πsd

cij

Given a path πsk, where k ∈ V is an intermediate vertex,
we associate the state estimate x̂(πsk) and the filter error



covariance P(πsk) corresponding to propagation of the EKF
along the path πsk. We say that the path πsk is a sub-path
of the path πsd if πsk ⊆ πsd.

In this work, we are interested in computing minimum cost
paths, subject to constraints on a secondary cost, namely the
error covariance of the EKF propagated over the path. We
wish to solve the following optimization problem:

min
πsd∈Psd

C(πsd) (4)

s.t. λ̄(P(πsk)) ≤ pmax ,∀πsk ⊆ πsd ∈ Psd ,

where λ̄ denotes the maximum eigenvalue.
Note that this formulation may easily be generalized to

include a separate end constraint such as

λ̄(P(πsd)) ≤ pend.

This will be clear after we present our approach.
Additionally, we assume that even with the best possible

sensing scenario and sensor suite, the metric on the esti-
mation error covariance cannot go below a particular lower
bound, given by pbest. This can happen in the intermittent
GPS scenario, in which this lower bound is given by the
precision of the GPS.

III. PROPOSED APPROACH

In this section, we present a computationally efficient but
approximate approach to solve the problem (4).

A. Construction of the Product graph
The main idea behind this approach is to uniformly

discretize the maximum allowed value pmax of the secondary
cost into N := d(pmax−pbest)/δe levels, given the parameter
δ. Then, we create a product graph defined as follows:

1) Create N copies of the vertex set V of the graph G,
one copy at each level starting from pbest. We can now
denote the i-th vertex in V at the `-th level in the
product graph by Vi,`.

2) For every pair of vertices i, j ∈ V for which an edge
eij ∈ E, and for every level ` from 1, . . . , N , compute
the maximum possible value of the covariance metric
λ̄eij (P) after propagation of the EKF over the edge
eij , with the initial covariance satisfying

λ̄(P0) = pbest + δ`.

If this maximum value is less than pmax, then we
construct an edge ē directed from Vi,` to Vj,¯̀, where
¯̀ is the least integer for which the final covariance
λ̄(P) ≤ δ ¯̀.

3) Quantize and round up λ̄eij (P0) in the interval
[pbest, pmax] using the discretization δ. In other words,
construct an edge ē directed from Vi,` to Vj,¯̀, where
¯̀ is the least integer for which the final covariance
λ̄(P) ≤ pbest + δ ¯̀.

Figures 1 and 2 illustrate the construction of the product
graph given a graph G for a simple example.

Finally, we apply any shortest path algorithm, e.g., Dijk-
stra’s algorithm [13], from the initial vertex Vs,1 to the final
vertex Vd,N to obtain the optimal path.

Fig. 1. The directed graph G that describes the primary cost and the
secondary cost associated with each edge.

Fig. 2. Construction of the product graph. In this example, the red edges
denote open-loop propagation of the filter, yellow edges denote the ones
on which the vehicle can range to beacons, and the green ones denote the
edges over which GPS signals are available.

In this proposed approach, the main issues to be addressed
are: 1) the choice of the discretization level δ; and 2)
the computation of the maximum possible value of the
covariance metric λ̄eij (P) over every edge eij . The smaller
the choice of δ, the closer to optimality the final path cost will
be, but at the cost of a larger resulting product graph. The
computation of λ̄eij (P) requires the propagation of the EKF
over an edge for every possible initial value of the covariance
metric, a computationally prohibitive step. However, if we
can derive a uniform bound on the increase of the covariance
metric over any edge, then we can mitigate the requirement
of running the entire EKF over every edge and for every
possible covariance metric value given by the N levels. This
bound will also drive the choice of the δ parameter.

B. A Bound on the Maximum Eigenvalue λ̄ metric

In this section, we derive a uniform upper bound for λ̄(Pt)
as a function of the initial value λ̄(P0). For this result, we in-
troduce the following notation. Let X := {x̂0, x̂1, . . . , x̂T },
denote a set of estimates at different times along an edge
e ∈ E. Under Assumption 2.1, this set is identical to
the nominal trajectory sampled at the corresponding times.
Define,

XS :=
{
x̂ ∈ X : λ

(
H(f(x̂,0))′R−1H(f(x̂,0))

)
= 0
}
,

denoting the subset of X at which the sensors provide
no useful information. The filter runs open-loop at these
locations. Then, the following result holds.

Theorem 3.1: Suppose that over the edge e ∈ E, the
cardinality of the open-loop set XS is κ. Then, under



Assumption 2.1, at the final estimation time instant T ,

λ̄(PT ) ≤ b
κ∑
j=1

aj−1 − aκζ + aκ
/

(d− ζc
ζc+ a

)T−κ
1

ζ + λ̄(P0)
+

c

ζc+ a

1− (d−ζc)T−κ

(ζc+a)T−κ

1− (d−ζc)
(ζc+a)


=: Be(λ̄(P0)),

where

a := max
x̂∈X

λ̄(F(x̂)) , b := λ̄(Q) ,

c := a min
x̂∈X\XS

λ
(
H(f(x̂,0))′R−1H(f(x̂,0))

)
,

d := bc/a+ 1 , ζ := (d− a+
√

(d− a)2 + 4bc)/(2c) .�
The proof of this result is presented in the Appendix. To
extend both of these results for m functioning sensors, we
simply replace the term H′R−1H by

∑m
j=1 H

′
j,tR

−1
j Hj,t.

The next result essentially bounds the change in the metric
λ̄(P) when the EKF is propagated over any edge of the PRM.

Corollary 3.1 (Change in λ̄ over an edge): Suppose that
the set X represents points along any fixed edge e of the
PRM. Then, the change in λ̄ over that edge, i.e., the quantity
∆e(λ̄(P0)) := Be(λ̄(P0)) − λ̄(P0), is a concave function
of λ̄(P0), with the maximum occurring for the value of

λ̄∗(P0) = max

{√
α− α
γ

− ζ, pbest

}
where

α :=

(
d− ζc
ζc+ a

)T−κ
, γ :=

c

ζc+ a

1− (d−ζc)T−κ

(ζc+a)T−κ

1− (d−ζc)
(ζc+a)

�

This result follows by applying standard calculus using
the bound from Theorem 3.1 and considering the derivative
of the maximum change in λ̄ with respect to λ̄(P0).

C. Discretization for Product graph construction

Corollary 3.1 can now be used to determine the discretiza-
tion level required to construct the product graph Gµ in the
following manner:

1) For each edge e ∈ E, compute the maximum ∆e,
denoted as ∆∗e (note that this maximum value may
be negative for some edges, signifying that for any
covariance value, the edge always reduces uncertainty
in the position).

2) Find the minimum (away from zero) in the absolute
value sense of all ∆∗e , and set

δ := min
e∈E
{|∆∗e| : |∆∗e| > 0},

This procedure is illustrated in Figure 3, when applied
to the example in Figure 1. For ease of presentation, let us
assume that the number of sampling instants over each edge
are the same, i.e., T is the same for each edge. Then,

δ =

{
|∆∗e(e24)| if |∆∗e(e24)| ≤ bT ,
bT otherwise.

Fig. 3. Illustration of the choice of the parameter δ. In the left figure, the
choice of δ would be ∆∗, while in the right figure, it would be equal to
bT , where b is the process noise term and T is the number of sampling
instants over the edge.

Algorithm 1 MOPA(s, d, V,E, f, h,Q,R, pbest, pmax)

δ := mine∈E |∆∗e|, using Corollary 3.1.
L := d(pmax − pbest)/δe+ 1, N := |V |L.
Initialize matrices Aexp, Cexp to zeros of size N ×N .
for eij ∈ E do

for ` ∈ {1, . . . , L} do
if Beij (pbest + (`− 1)δ) ≤ pmax then

if j = d then
Aexp((`− 1)|V |+ i, (L− 1)|V |+ j) = 1
Cexp((`− 1)|V |+ i, (L− 1)|V |+ j) = cij

else
rij := dmax{0, Beij (pbest + (`− 1)δ)/δ}e
Aexp((`− 1)|V |+ i, rij |V |+ j) = 1
Cexp((`− 1)|V |+ i, rij |V |+ j) = cij

end if
end if

end for
end for
πapprox := Dijkstra(Aexp, Cexp, s, (L− 1)|V |+ d).
return πMOPA = Project(πapprox).

We now give a Multi-Objective Planning Algorithm
(MOPA) that summarizes these steps (cf. Algorithm 1). The
construction of the product graph is performed in two nested
for-loops. The outer for-loop runs over the set of edges E
of the underlying original graph G. The inner for-loop runs
over the set of discrete levels decided by the choice of the
parameter δ using Corollary 3.1. The first if-loop checks
whether the uncertainty bound when propagated over the
edge eij starting from a certain level ` is less than the
pmax threshold. If it is, then the particular edge is allowed
in the product graph. The inner most if-loop wires those
vertices that have an allowable edge in the product graph,
depending on whether the end vertex is the destination d or
not. Next, the algorithm computes an optimal path πapprox
(if it exists) using a simple Dijkstra search over the product
graph, commencing from the start vertex s and terminating
at the destination vertex in the product graph. The final
choice of the path is obtained by projecting the path from
the product graph down to the original graph G.

The following result summarizes theoretical properties of
Algorithm 1.

Theorem 3.2: Under Assumption 2.1, the proposed ap-
proach in Algorithm 1 has the following properties:

1) If the algorithm yields a solution πMOPA 6= ∅, then the
true uncertainty along the solution πMOPA measured in



the λ̄ metric is upper bounded by pmax, i.e.,

λ̄(P(πMOPA)) ≤ pmax.

2) If the original graph G = (V,E) is sparse, i.e.,
|E| � |V |2, then the computational complexity of
Algorithm 1 is

O

(
pmax − pbest

δ

(
|E|+ |V | log

(
|V |pmax − pbest

δ

)))
Proof: The first part follows from the fact that Al-

gorithm 1 obtains a path based on an upper bound on λ̄
propagated over every edge, optimized over any value of
the covariance at the start of the edge. The second claim
follows from the facts that (i) the product graph is sparse,
(ii) the complexity of the construction of the product graph
is O(|E|(pmax−pbest)/δ) and (iii) the complexity of running
Dijkstra’s algorithm on a sparse graph is O(|E|+|V | log |V |).

D. Adaptive Quantization for Computational Efficiency

In this section, we present an approach that chooses a
separate quantization level for each vertex in V . This ap-
proach allows for a reduction in the total number of vertices
in the product graph, which in turn leads to a reduction in
the worst-case completion time of the Dijkstra step.

The main idea is to run a for-loop over the set of all
vertices in which for each vertex i ∈ V , we examine which
are the incoming edges e (if they exist) into that vertex, and
pick the minimum of |∆∗e| over those edges and set that as the
quantization level δi. The number of levels Li for the vertex i
is computed using this specific δi. The rest of the procedure
remains almost identical to that described for the uniform
quantization approach in Algorithm 1. The quantization is
adaptive in the sense that we make use of the fact that over
some edges the change in the covariance may be more than
over others. This procedure is described in Algorithm 2.

Note that as compared to the uniform quantization level
approach, the adaptive approach will introduce more round-
off error since the discretization can be coarse for some
vertices. Additionally, the adaptive approach introduces an
extra for-loop over the set of original vertices V . However,
we will see numerical examples in the next section in which
this approach is much faster because the overall number of
levels and the total number of vertices in the product graph
can be much smaller than for Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we present a numerical implementation of
our proposed approach on an illustrative example. We assume
a planar environment E and a simple first order integrator
motion model for the vehicle, with an onboard range sensor
that is able to measure distances to fixed beacons located at
p ∈ E . In this experiment, we assume the following models
for the different parameters of the problem. The primary cost
function c was chosen to be the Euclidean distance between

Algorithm 2 Adaptive MOPA(s, d, V,E, f, h,Q,R, pbest, pmax)

for i ∈ V do
Let ei denote the incoming edges into i
δi := minei |∆∗ei |, using Corollary 3.1.
Li := d(pmax − pbest)/δie+ 1,

end for
N := |V |max{Li}.
Initialize matrices Aexp, Cexp to zeros of size N ×N .
for eij ∈ E do

for ` ∈ {1, . . . , Li} do
if Beij (pbest + (`− 1)δi) ≤ pmax then

if j = d then
Aexp((`− 1)|V |+ i, (Lj − 1)|V |+ j) = 1
Cexp((`− 1)|V |+ i, (Lj − 1)|V |+ j) = cij

else
rij := dmax{0, Beij (pbest + (`− 1)δj)/δj}e
Aexp((`− 1)|V |+ i, rij |V |+ j) = 1
Cexp((`− 1)|V |+ i, rij |V |+ j) = cij

end if
end if

end for
end for
πapprox := Dijkstra(Aexp, Cexp, s, (L− 1)|V |+ d).
return πMOPA = Project(πapprox).

two vertices if an edge exists.

f(x,n) := x + n,

hj(x,vj) :=

{
‖pj − x‖+ vj , if ‖pj − x‖ ≤ rsens,

∅, otherwise.

A. Illustrative Example
In this example, we illustrate the uniform quantization

approach. Figure 4 shows how the optimal path (solid blue)
arising out of Algorithm 1 changes with different values of
the maximum uncertainty pmax. There are 10 nodes in the
original graph G. The start and destination vertices are the
left and right green ones, respectively. The black dots located
towards the bottom part of the environment represent the
beacons that the vehicle can range to. The sensing radius
rsens was chosen to be 3 units. The unconstrained primary
optimal solution is shown in dashed-red.

The optimal primary costs at different values of pmax
are reported in Table I. We also report the true value of
λ̄ along the path πMOPA obtained from Algorithm 1, by
propagating the EKF equations (3), to verify the first claim
from Theorem 3.2 and to compare the gap with the bound.
For this small sized example, we can actually compare our
result with the globally optimal solution (green curve in
Figure 4) of the problem. We conclude that except at very
small values of pmax, we obtain a solution which is consistent
with the global optimum for this problem.

Remark 4.1 (Conservativeness of the bound): While the
bound appears to be reasonably accurate in this example,
there have been instances in which the bound can be lot
more conservative, leading to a high gap with respect to
the true value. Further, a ranking of two paths based on



(a) pmax = 0.61 (b) pmax = 0.7 (c) pmax = 0.8

Fig. 4. Choice of different optimal paths at different levels of maximum uncertainty pmax. The process uncertainty Q = 0.01I, and the measurement
uncertainty Rj = 1, ∀j. The best value of estimation precision pbest = 0.001.

TABLE I
OPTIMAL COSTS AT DIFFERENT pmax VALUES.

pmax True λ̄ Approx. Optimal Global Optimal
< 0.61 N/A N/A N/A

0.61 0.60 19.67 18.751
0.65 0.60 18.754 18.751
0.7 0.60 18.751 18.751
0.8 0.7 12.91 12.91
≥ 1.1 1.07 10.24 10.24

TABLE II
OPTIMAL COSTS USING ADAPTIVE QUANTIZATION

pmax Optimal cost True λ̄
< 8 - -

8 1273.38 7.051
9 1214.60 2.512
13 1205.28 8.778
≥ 14 1174.29 8.168

the computation of the bound may not be preserved in the
true propagation of the entire filter over the paths, unless
certain extra conditions hold. These conditions are a subject
of current work. �

B. Adaptive Quantization approach

We experimented on a larger sized graph drawn out of
a PRM. In this experiment, we investigated the effect of
using the Adaptive Quantization level for the algorithm.
Figure 5 shows how the optimal paths (solid blue) arising
out of Algorithm 1 change with different values of the
maximum uncertainty pmax, using the Adaptive quantization
levels. Figure 6 shows how the optimal paths (solid blue)
arising out of Algorithm 1 change with different values of the
maximum uncertainty pmax, using the uniform quantization
level. The optimal cost and the comparison with the true λ̄
for each approach are reported in Tables II and III.

We also report a comparison of the space complexity and

TABLE III
OPTIMAL COSTS USING UNIFORM QUANTIZATION

pmax Optimal cost True λ̄
< 7 - -

7 1214.60 2.512
8 1214.60 2.512
9 1205.77 2.512
≥ 12 1174.29 8.168

TABLE IV
COMPARISON OF SPACE COMPLEXITY

pmax Adaptive Uniform Improvement
Edges Nodes Edges Nodes

8 47413 2253 174542 9257 3.68
9 55354 2541 205268 10486 3.71

12 79104 3405 297642 14207 3.76
13 87023 3693 328368 15436 3.77
14 94930 3970 359192 16682 3.78

computational times1 in using the uniform and the adaptive
quantization approaches. In particular, we compare the ratio
of the number of edges of the extended graphs, as well as
the ratio of the computation time for both approaches.

The results summarized in Tables IV and V demonstrate
the benefit of the adaptive quantization approach with respect
to space complexity and computation time. However, this
advantage comes at a cost of loss of accuracy as is seen from
Figure 5(c), in which the adaptive quantization approach
has selected a path that is different from the shortest path,
although it falls within the maximum λ̄ threshold.

Remark 4.2 (Alternate metrics for uncertainty: Trace):
While the use of λ̄(P) has a computational advantage due
to the closed form expressions, that metric can provide
conservative solutions because we are approximating the
localization error by the worst case scenario. In this
aspect, the trace should provide us with a less conservative
solution, but at the expense of higher computation time. Our

1Times refer to a MATLAB implementation of the algorithms executed on
an i7 Dual-core 2.8GHz, 8MB RAM. Matrices are represented as sparse
data objects.



(a) pmax = 8 (b) pmax = 9 (c) pmax = 13

Fig. 5. Choice of different optimal paths using an Adaptive quantization level, for different values of maximum uncertainty pmax. The process uncertainty
Q = 0.01I, and the measurement uncertainty Rj = 1, ∀j. The best value of estimation precision pbest = 0.001.

(a) pmax = 8 (b) pmax = 9 (c) pmax = 13

Fig. 6. Choice of different optimal paths using the uniform quantization level for different values of maximum uncertainty pmax. The process uncertainty
Q = 0.01I, and the measurement uncertainty Rj = 1, ∀j. The best value of estimation precision pbest = 0.001.

TABLE V
COMPARISON OF TIME COMPLEXITY

pmax Adaptive [s] Uniform [s] Improvement
8 41.94 73.45 1.75
9 45.46 97.30 2.14
12 48.82 175.65 3.60
13 51.04 215.62 4.22
14 52.95 262.78 4.96

approach for this metric leads to the following semi-definite
optimization problem (SDP):

min
Γ,P∈S++

Tr
(

ΓHt(HtΓH
′
t + R)−1H′tΓ− Γ + P

)
s.t. Γ = FtPF′t + Q

Tr (P) ≥ pbest,

which is a convex problem (see, e.g., [14] for a proof
of concavity of the Riccati operator). Therefore, a global
minimum exists, and is bounded away from zero. However,
this SDP needs to be solved at each sampling instant, making
this approach lot more computationally intensive than for λ̄

as the metric, in which case Corollary 3.1 yields a closed-
form expression. �

V. CONCLUSION AND FUTURE DIRECTIONS

This paper presented a novel approach to the problem of
optimal path planning in GPS-denied environments, under
a hard constraint on the size of the estimation error co-
variance. A novel bound on the maximum eigenvalue of
the error covariance matrix was developed to produce an
approximate solution in a computationally efficient manner.
Two novel algorithms were proposed, one of which was
more accurate while the other was more computationally
efficient. Formal guarantees on the resulting solution in
satisfying the secondary constraint as well as the complexity
of the computation were provided. The application of the
two algorithms on numerical examples showed promising
results in terms of accuracy even though they are known to
be sub-optimal.

A major open direction is to be able to provide guaran-
tees on the factor of optimality or design new approaches
with a factor of optimality guarantee with respect to the



primary cost function. Extension to multiple secondary costs
is another open direction. Additional directions include the
presence of sensor misdetections in certain regions of the
environments, which is the topic of our recent work [15].
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APPENDIX

To prove Theorem 3.1, we require the following interme-
diate result, which establishes a bound for the value of a
scalar variable l which may evolve as per one out of two
equations at any given time.

Lemma 1.1: Suppose that in the time interval
[0, 1, . . . , T ], a scalar variable ` evolves as per

`t+1 =


a`t + b

c`t + d
, for some T − κ instants,

alt + b, for the remaining κ instants,

where a, b, c, d are some finite positive scalars, then

`T ≤ b
κ∑
j=1

aj−1 − ζaκ + aκ
/

(d− ζc
ζc+ a

)T−κ
1

ζ + `0
+

c

ζc+ a

1− (d−ζc)T−κ

(ζc+a)T−κ

1− (d−ζc)
(ζc+a)


where ζ is defined in Theorem 3.1.

Proof: Observing that for the above evolution of `,
a`+ b

c`+ d
+ b ≥ a(a`+ b) + b

c`+ d
,

which means that for any sequence of κ occurrences of the
second equation, one can always upper bound the resulting
` trajectory by considering all the occurrences of evolution
by the first equation, followed by the second.

The evolution given by the first equation in the time
interval [0, T − κ] can be simplified as follows. Set

µt := 1
/

(ζ + `t)

Since bc > 0, we get

µt ≥
d− ζc
ζc+ a

µt−1 +
c

ζc+ a

⇒ µt ≥
(d− ζc
ζc+ a

)k
µ0 +

c

ζc+ a

(1− (d− ζc)k/(ζc+ a)k

1− (d− ζc)/(ζc+ a)

)
,

Therefore,

`T−κ ≤ 1
/

(d− ζc
ζc+ a

)T−κ
1

ζ + `0
+

c

ζc+ a

1− (d−ζc)T−κ

(ζc+a)T−κ

1− (d−ζc)
(ζc+a)

−ζ.
The claim now follows since `T can be at most the above
right hand side subject to the second, linear evolution for κ
time steps.

Next, we recall the following recursion, originally proven
in [16]. In this result, the notation λ refers to the minimum
eigenvalue.

Theorem 1.1: At every time instant t,

λ̄(Pt) ≤
λ̄2(Ft)λ̄(Pt−1) + λ̄(Qt)

λ
(
H′tR

−1
t Ht

)
(λ̄2(Ft)λ̄(Pt−1) + λ̄(Qt)) + 1

,

(5)
where the Jacobians Ft,Ht are evaluated at f(x̂t−1,0).

We can now prove Theorem 3.1.
Proof: [Proof of Theorem 3.1] Consider the recursion

from Theorem 1.1. Substituting zt := λ̄(Pt), we obtain the
following linear rational recurrence,

zt ≤
azt−1 + b

czt−1 + d
(6)

where we used the definition of a, b, c and d.
Now, whenever x̂ ∈ X \ XS , z will evolve as per (6).

Otherwise, z evolves as per

zt ≤ azt−1 + b,

which happens at most κ times as per the assumption.
Therefore, applying Lemma 1.1, the claim is established.
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