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Abstract— We cast the classic problem of achieving k-
anonymity for a given database as a problem in algebraic
topology. Using techniques from this field of mathematics,
we propose a framework for k-anonymity that brings new
insights and algorithms to anonymize a database. We focus
on the simpler case when the data lies in a metric space
which is instrumental in introducing the main ideas and
notation. Specifically, by mapping a database to the Euclidean
space and by considering the distance between datapoints, we
introduce a simplicial representation of the data and show how
concepts from algebraic topology, such as the nerve complex
and persistent homology, can be applied to efficiently obtain
the entire spectrum of k-anonymity of the database for various
values of k and levels of generalization. For this representation,
we provide an analytic characterization of conditions under
which a given representation of the dataset is k-anonymous. We
introduce a weighted barcode diagram which, in this context,
becomes a computational tool to tradeoff data anonymity with
data loss expressed as level of generalization. Some simulations
results are used to illustrate the main idea of the paper.

Index Terms— Privacy, k-anonymity, persistent homology.

I. INTRODUCTION

Recent times have seen a revolution in computing tech-

nologies. Third-party computing services, such as the Cloud,

have been creating new paradigms for both, data storage and

computation. Such technologies require one to repeatedly re-

visit the basic question of “How do we protect the data from

a privacy perspective?”. Although this problem originated

in database theory and computer science applications, it has

recently expanded to domains such as systems and control.

As the world is becoming more connected via millions of

sensors [1], privacy is becoming a top priority in the control

community.

This paper considers static data collected within a database

that, in the context of cyber-physical systems, could represent

log/monitoring data that needs to be analyzed offline to

determine overall system performance, enterprise level fault

detection and propagation, forensic analysis, etc. Although

several approaches have been proposed to address different

aspects of the privatization of data within a database, this

paper provides a novel framework and perspective to address

the most classical version of the problem using concepts and

tools from algebraic topology.

Among several methods that have been developed for

database privacy, a classic and popular approach is k-

anonymity, which is a mechanism for protecting privacy of

individuals represented as entries in a database [2]. For a
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given value of k, the original database is modified so that

at least k individuals in the database have identical quasi-

identifiers. This is achieved by generalizing numeric or text

attributes: for example, the ZIP code can be generalized

so that a certain number of the least significant digits are

suppressed as 46532 → 465∗∗, age could be generalized to

intervals, 35 → [30, 40], and the gender could be generalized

as {M,F} → Person. The problem of computing an

optimal k-anonymous version of a database has been shown

to be NP-hard [3]. However, efficient algorithms such as

Incognito [4] and its variants or greedy clustering-based

algorithms [5] have been proposed to achieve k-anonymity.

A multi-dimensional extension of the greedy approaches has

been addressed in [6], which results into a representation

of the database that is reminiscent of classic grid-based

paintings by Mondrian. In multi-dimensional settings, a

data aggregation scheme based on Hilbert curves has been

proposed in [7].

Algebraic topology is a branch of mathematics that lever-

ages tools and concepts from abstract algebra to study

topological spaces. For example, a simple model for sensor

network is a set of points in a (multidimensional) space in

which two points (or sensors) are neighbours if they are

within a specified distance of each other. Then, concepts

from algebraic topology, such as homology, have been used

to detect holes in sensor networks [8], [9]. Distributed

algorithms to localize holes in sensor networks using related

concepts have been addressed in [10] and in [11]. Recently

such methods have been also used for filtering and position

estimation in [12], [13].

One concept of privacy which has been applied to sev-

eral control problems is that of differential privacy [14].

Informally, this concept means that for a given database, if

any single individual is removed from the database, then no

output of a computation run on the database would become

significantly more or less likely. This concept has been

applied to achieve differential privacy of Kalman filtering and

estimation problems [15], to ensure a level of truthfulness in

electric vehicle charging applications [16], to achieve average

consensus in a private manner [17], to name a few. While

the concept of differential privacy is very general and is

applicable to dynamic databases, the resulting mechanism

relies very strongly on the type of function/query that needs

to be computed on the database. In contrast, k-anonymity

is a static concept but is independent of any computation

to be carried out on the database and therefore suitable in

the context of offline analysis. That said, there are situations

when k-anonymity is not sufficient and individuals can be

re-identified despite anonymization. Although approaches to

address this gap have been considered (cf. [18]), k-anonymity



is still widely used.

This paper introduces a novel perspective to data privacy

based on algebraic topology. In particular, we address the

case when the data lies in a metric space. By defining two

datapoints that lie within a specified radius as neighbours, we

show that the representation falls within the natural setting of

a Čech (or in general, a Nerve) complex [19]. By increasing

the radius (generalization), we show that the sequence of

Čech complexes result into a filtration, i.e. nested complexes.

This further implies that tools such as persistent homology

can be applied to efficiently obtain the entire spectrum of k-

anonymity of the database for various values of the general-

ization. The benefit of this approach is that once the family of

complexes is built, for various generalization values, we can

apply fast and scalable persistent homology algorithms, such

as Perseus [20] to determine the tradeoffs. Furthermore, the

persistent diagram not only provides the tradeoffs between

a generalization and the value of k, but also show how

many equivalent classes are formed for a given generalization

achieving a certain k-anonymity, a metric that has an impact

on the anonymized data quality [21]. For this representation,

we provide an analytic characterization of conditions under

which a given representation of the dataset is k-anonymous.

We then briefly discuss how this method can be extended to

the general case of a mix of categorical and metric data.

This paper is organized as follows. The problem formu-

lation is presented in Section II. Background results and

concepts from algebraic topology are reviewed in Section III.

The proposed approach is presented in Section IV for numer-

ical data along with some simulation results.

II. PROBLEM FORMULATION

Let us consider a database table T (A1, A2, . . . , Am) con-

sisting of N rows, where each Ai ∈ D are various attributes

that in general can take the form of numeric and/or categor-

ical values, i.e., the domain D can either be a set of discrete

or continuous values. Without loss of generality, we can

identify with QT = {A1, A2, . . . , Ad} a set of d attributes

that we define as quasi-identifiers, namely attributes that can

be joined with external information/databases so that private

information can be obtained. Typical examples of private data

that could be obtained are names of individuals, salaries, etc.

Another database table T̄ (Ā1, Ā2, . . . , Ām) consisting

of N rows is said to be a generalization T̄ = G(T ) of the

table T if, for every row Tj of T ,

QTj
⊂ QT̄j

.

In this paper, as said previously, we will be focusing on the

concept of k-anonymity for privacy, that is formally defined

as follows.

Definition 2.1 (k-anonymity [2]): Consider a generalized

database T̄ and a quasi-identifier set QT̄ . The set QT̄ is said

to have the k-anonymity property if each unique tuple in the

projection of T̄ on QT̄ occurs at least k times in T̄ . �

Given a database T , the problem of k-anonymity is thus to

determine a generalization function G(.) so that the resulting

database T̄ = G(T ) is k-anonymous. Clearly, one may

simply generalize every entry and find the smallest set that

generalizes every row of T . However, this trivial method

would completely destroy the information content in the

original database. The problem is how to minimize such as

over-generalization of the quasi-identifiers. This notion will

be made precise in Section IV.

III. BACKGROUND ON TOPOLOGICAL METHODS

This section provides a summary of some concepts from

algebraic topology (cf. [19], [22]) that will be used in our

approach.
Definition 3.1 (Čech complex): Given a collection of

points {xi} ∈ R
n, the Čech complex is the abstract simplicial

complex whose k-simplices are determined by unordered

(k + 1)−tuples of points {xi}
k
0 whose closed ǫ-ball neigh-

borhoods have a point of common intersection.

A. Simplicial Homology

Homology is an algebraic characterization of “holes” in a

topological space. The central notion is that of a boundary

homomorphism, which in the context of simplicial com-

plexes, encodes how simplicies are attached to their lower

dimensional facets. To define (simplicial) homology, of a

complex C, we choose an ordering of each simplex, in the

same way directed graphs are ordered. Given such ordering

we consider R-vector spaces Ck(C) with basis the oriented

k-simplicies. We thus have that C•, forms a sequence of

vector spaces, which we call chain complex. A boundary

homomorphism is defined as the linear map ∂k : Ck(C) →
Ck−1(C) given by associating each basis element of Ck(C)
to the formal sum of its (oriented) faces of dimension k−1.

The boundary operator ∂ = {∂k} thus encodes the assembly

instructions of C. It turns out that the kth homology group

of the complex C, Hk(C) is given by

Hk(C) = Zk/Bk = ker ∂k/im ∂k+1 .

The group Zk = ker ∂k is called the k-th cycle group and

its elements (chains) represent k-cycles. We have that Bk =
im ∂k+1 is the k-th boundary group whose elements are k-

boundaries. The quotient space Hk(C) thus represents all the

k-cycles that are not boundaries of k + 1 simplices, namely

cycles that represent k-dimensional “holes”. The homology

of the complex C is then H•(C) = {Hk(C)}.
In this paper, we will use the notion of dimension of

the k-th homology, that is the dimension of the vector

space Hk(C), dimHk(C). In particular, the k-th homology

group Hk(C) is said to be trivial if dimHk(C) = 0.

B. Persistent Homology

Let us consider a sequence of complexes Cǫ with ǫ =
{ǫ1, ǫ2, . . . , ǫM}, more specifically the sequence of Čech

complexes {Cǫi}Ni=1, for increasing ǫi ∈ R≥0, ǫi ≤ ǫj
for i 6= j. There are clearly inclusion maps between such

complexes

Cǫ1
ı
→֒ Cǫ2

ı
→֒ · · ·

ı
→֒ CǫM−1

ı
→֒ CǫM .

Rather than studying the homology of each complex for each

value of the parameter ǫ, one can then study the homology



Fig. 1: Example of the barcodes.

of the inclusions ı : H•(C
ǫi) → H•(C

ǫj ) for i < j. Such

maps are important as they capture topological features that

persist over the parameter space.

The dimension of the homology groups as a function of

the single parameter ǫ can be plotted in a diagram, called

the barcodes diagram, see [22]. We show a simple example

in Figure 1 where ǫ is the radius of a ball around each

vertex, and where there is a k-simplex whenever k+1 circles

have non-empty intersections. For small values of ǫ, we have

that the number of connected components, dimH0, is the

number of vertices (0-simplicies), and as ǫ increases, more

vertices get connected, resulting in components to merge till

a single connected component is obtained. For a small value

of ǫ there are no high dimensional holes, however, at some

point, before the first 2-simplex (blue triangle) gets filled in,

such 2-simplex is not filled and generates a hole that quickly

disappears. At a later value of ǫ, a large hole is formed at

the time when the vertices form a single large connected

component. As the ǫ parameter increases further at some

point the “middle” hole gets filled and the dimension of the

first homology, dimH1 becomes zero again. As ǫ further

increases, tetrahedrons appear, first with an empty volume,

namely a void, that disappear. Higher dimensional holes

will likely occur, but we did not depict them. As ǫ further

increases the complex will have trivial higher homology

groups and only have a single connected component.

In this paper we will make use the persistent homology in

the context of k-anonymity.

IV. k-ANONYMITY VIA PERSISTENT HOMOLOGY:

NUMERICAL ATTRIBUTES

In this section, we describe the algebraic topological

approach toward achieving k-anonymity. In this section,

we will restrict our attention to the case of the attributes

in the quasi-identifier set QT being all numeric/continuous

variables, such as Age, Salaries, Taxes paid in a year, etc.

In this case, we can clearly represent the set QT as a |QT |-
dimensional vector. We will assume that all the vectors are

elements of a real vector space.

Table I (a) shows a sample dataset with two quasi-

identifiers QT = {Age,ZIP Code}. Table I (b) shows a

3-anonymous version of the dataset, which we will compute

in the remainder of this paper. In the following, we will

often refer to entries of the table T as points due to the fact

that they take real values. Also, note that without any loss of

Age ZIP Code Salary

25 47677 $47,000
22 47602 $32,000
24 47678 $52,000
43 47905 $151,000
52 47909 $145,000
38 47906 $98,000
47 47605 $110,000
36 47673 $92,000
32 47607 $115,000

(a) Example data set with QT =
{Age,ZIP Code}.

Age ZIP Code

[22-25] [47602-47678]
[22-25] [47602-47678]
[22-25] [47602-47678]
[38-52] [47905-47909]
[38-52] [47905-47909]
[38-52] [47905-47909]
[32-47] [47605-47603]
[32-47] [47605-47603]
[32-47] [47605-47603]

(b) 3-anonymized table

TABLE I: Sample data set for illustrative purpose.

Fig. 2: In (a), we show a anonymity 4-simplex representing the fact
that there exists an ǫ such that the 4 points can be anonymized. In
(b), we show an example where there is no anonymity 4-simplex
(indeed we have only two 2-simplices) as the selected ǫ is not large
enough, or equivalently the generalization is high enough, to ensure
4-anonymity.

generality, we can consider the data to take values within the

hypercube M = [0, 1]|QT |, since one can always normalize

the data accordingly.

The first definition is a direct application of the Čech

complex as summarized in Section III. In this paper, we use

this structure to capture the k-anonymity property of the data.

Definition 4.1 (Anonymity Complex): Given a table T
with N rows and a set of quasi-identifier QT , let us consider

the N points {pi}
N
1 ∈ MN . We define an anonymity

complex C(p) the simplicial complex whose k-simplicies are

determined by (k + 1) points {pi0 , pi1 , . . . , pik}
k
0 such that

closed ǫ-ball neighborhoods centered around these points

have at least one intersection point. We call the radius ǫ
the global generalization strategy. �

We now introduce an important building block.

Definition 4.2 (Anonymity k-simplex): Given a global

generalization ǫ, we say that k points have the k-anonymity

property if all the closed ǫ-ball neighborhoods of the k
points all intersect in at least a point. In this case, we have

that the k points form a k-simplex, which we term as an

anonymity k-simplex and denote with Sk. �

Figure 2(a) shows an example of an anonymity 4-simplex

for a given global generalization ǫ while Figure 2(b) shows

an example where for the same value of ǫ, 4-anonymity

cannot be achieved.

The following is a useful test to determine whether k-

anonymity can be achieved for a given value of ǫ or not.

Lemma 4.1: Given a set of points p = {pi}
N
1 correspond-

ing to N rows of the table T , given a global generalization ǫ
and the corresponding anonymity complex C(p), we have



that the points {pi}
N
1 have the k-anonymity property if and

only if

C(p) =
⋃

i

Sℓi

where Sℓi is the i-th anonymity ℓi-simplex with ℓi ≥ k for

i ∈ N0. We say in this case that the anonymity complex

achieves k-anonymity.

Proof: The points {pi}
N
1 have the k-anonymity prop-

erty if and only if we can sub-divide the set of points into

subsets such that

{pi}
N
1 = {pi}

i1
1

︸ ︷︷ ︸

Σℓ1

∪{pi}
i2
i1+1

︸ ︷︷ ︸

Σℓ2

∪ · · · ∪ {pi}
N
iN−1+1

︸ ︷︷ ︸

ΣℓN

,

and to each subset Σℓi(p), we can associate an anonymity

ℓi-simplex Sℓi with ℓi ≥ k for any i (for given fixed ǫ) and

Sℓi ∩ Sℓj = ∅ for i 6= j.

Given the previous set relations, we have that complex C
associated with the set of points {pi} is then given by the

union of the Sℓi .

This result then establishes a natural connection between

the properties of the anonymity complex, in terms of some

of its subcomplexes, and the k-anonymity property.

We further explore how topological properties of the

anonymity complex are related to the k-anonymity property

and how we can leverage that to find an “optimal” general-

ization. We first establish some topological properties of C
and then define what we mean with “optimal” generalization.

Proposition 4.1: An anonymity complex C, for a given ǫ,
has the k-anonymity property if and only if its homology

groups Hn(C) are trivial for any n > 0, and every connected

components is an ℓ-simplex with ℓ ≥ k. Furthermore, when

this is the case the number of equivalence classes generated

by using the ǫ generalization is given by the dimension of

the zero-th homology, dimH0(C). �

Proof: (If) From Lemma 4.1, we know that we can

decompose C into a finite number of disjoint anonymity

k-simplices. It is known [19] that in this case Hn(C) =
⊕

i Hn(Sℓi), namely the n-th homology of C is given by

the direct sum of the n-th homology of the anonymity k-

simplices. As the k-simplices are simply connected spaces

and contractible, they have trivial high order (n > 0)

homology groups and H0(Sℓi) ≈ Z for every i.
(Only if) Let us assume that C has Hn(C) = {0} for

n > 0, and H0(C) is non-trivial, and in particular let us

assume that H0(C) ≈ R
s. This means that the complex C

has s connected components. From the hypothesis that the

connected components are ℓ-simplices with ℓ ≥ k, we

know that each component is a anonymity simplex. Thus

the anonymity complex C has the k-anonymity property.

We are now able to connect topological properties of

the anonymity complex with the k-anonymity property. Of

course, as it can be seen from Proposition 4.1, the result still

depends on ǫ, namely the generalization.

When anonymizing a dataset, one is typically interested

in “corrupting” the data by the least amount. Indeed, if

one carefully thinks about the k-anonymity problem, it is

Algorithm 1 k-anonymity via Persistence Homology

Inputs: p = {pi}
N
1 ∈ R

d×N , Parameter: k, Radii:

{ǫ1, . . . , ǫM}
Re-scale the dataset into the unit cube [0, 1]d ⊂ R

d×N .

for every value of ǫ ∈ {ǫ1, . . . , ǫM} do

Construct the anonymity complex Cǫ(p)
end for

Compute weighted persistent homology

return Complete bar code diagram

always possible to find a large enough k that makes the data

anonymous, i.e., if one makes the extreme choice of k = n,

then the entire data will be in one equivalence class and thus,

k-anonymity will be achieved. The issue with this is that the

information contained in the data will be completely lost.

In the context of this paper, as the generalization is

parametrized by ǫ, we are interested for find the smallest

value of ǫ that gives k-anonymity. We then have the following

definition.

Definition 4.3 (Minimal Anonymity Complex): Given an

anonymity complex C(p) associated to a set of points, lets

us denote with Cǫ the anonymity complex for a given

generalization ǫ.
We define as minimal anonymity complex the following

object

Cǫ∗ = min
ǫ

Cǫ ,

such that Cǫ∗ achieves k-anonymity. �

Even without minimization over ǫ, the k-anonymity prob-

lem known to be an NP-hard problem, and so it is clear

that we cannot easily find the minimal anonymity complex.

To find an approximate solution to the problem, we instead

study the persistent homology of Cǫ. In particular, in this

paper, we adapt the idea of persistent homology as a tool to

provide the full spectrum of k-anonymization one can obtain.

Our approach is summarized in Algorithm 1.

Note that the parameter ǫ induces a family of complexes

such that Cǫ1
ı
→֒ Cǫ2

ı
→֒ · · ·

ı
→֒ CǫM , where ǫi ≤ ǫj ,

for any i < j, and thus we recover the same setting as

in the persistent homology. Formally we have a ǫ-based

filtration [22]. The idea here is to leverage the barcodes or

persistent diagram to extract regimes of interests, namely

anonymity strategies – values of ǫ – that lead to k-anonymity

for different values of k.

Such a persistent diagram has two specific features:

• Each bar in H0 diagram has a weight corresponding to

the number of elements in the connected components;

• Given a value k, we only consider bars that have at

least k elements.

To illustrate the proposed approach, consider the sample

dataset shown in part (a) of Table I. For the case of 3-

anonymity in particular, the lower center figure depicts H0

while the one in top center shows the H1. We can see that a

hole gets created for the values of the radius approximately

in [0.11, 0.13] and then it gets filled thereby making the



dataset 3-anonymous. But again in the interval [0.17, 0.19],
a hole gets created around when the complex [1, 2, 3, 7, 8, 9]
gets formed. After ǫ increases more, this hole disappears

and we are left with an anonymity 3-simplex [4, 5, 6] and an

anonymity 6-simplex [1, 2, 3, 7, 8, 9].
We can clearly see three regimes where 3-anonymity is

possible. The first one (as indicated) has three classes with

three elements in each. The second regime corresponds to

the values of radius in the interval [0.19, 0.4] which has only

two equivalence classes, and the third one (radius greater

than 0.4) being the trivial solution where there is only one

class with nine elements.

For minimal data quality loss, the interval [0.17, 0.19] is

the best solution as 3-anonymity can be reached with largest

number of classes. Mapping the first one back to the dataset

yields a 3-anonymous version of the dataset shown in part

(b) of Table I.

In Figure 3 shows that 2-anonymity can be achieved for

generalizations ǫ > 0.08. For generalizations with ǫ ≤ 0.08,

we have only one anonymity 2-simplex and the rest of the

data will be just points, thus 2-anonymity cannot be achieved.

The rightmost plot shows that 4-anonymity can be reached

for ǫ > 0.4. Note that even if there is an anonymity 6-simplex

in the interval [0.19, 0.4], there is no way for the [4, 5, 6]
complex to achieve 4-anonymity and thus the generalizations

in the interval [0.19, 0.4] will not yield 4-anonymity. For ǫ >
0.4], we can clearly achieve 4-anonymity, but as everything

gets into a single class, all the data will be generalized to

the same record and thus data quality is compromised.

Remark 4.1 (Advantages of proposed approach): The

main advantage of the method proposed is that it enables

us not only to find a k-anonymization for a fixed k (if it

exists), but also to provide alternative regimes that can be

especially useful when k-anonymity cannot be achieved

for the given k. This generally is not something that other

algorithms, such as [4], [6], [7] directly provide. Indeed,

one would need to run the same algorithms for various

values of k to obtain the same tradeoff picture as we obtain.

The persistent diagram we consider in this paper is instead

computed in one shot from the filtration {Cǫ}. Furthermore,

we leverage very scalable algorithms for such computation

based on discrete Morse theory, see [23], [20]. Also, note

that not only the persistent diagram allows us to determine

the right regime that gives the desired k-anonymity, but

we can also look at the other important tradeoff parameter

such as the number of classes. For a given k, it is indeed

possible to find various generalizations ǫ that meet the

k-anonymity requirement, however some might lead to

equivalence classes with many more than k elements that is

in general not desirable.

Remark 4.2 (Extension to Categorical/Mixed Data):

The methodology we have described in the previous

section has nice properties but also limitations: it is

restricted to numerical attributes where the notion of

a radius is well defined and “intersecting balls” (or

polytopic approximations) in high dimensional spaces can

be computationally challenging. We discuss, briefly, here

ideas on how to extent the previous setting to scenarios

where attributes are categorical (such gender, country of

citizenship, phone numbers).

The starting point in this case is a generalization tree, that

given a set of categorical attributes provides a common gen-

eralization. For example, given the attributes {Male, Female}
as leaves of a tree, their generalization could be {Person},

appearing as root in a tree. For countries, such as {USA,

Canada, Mexico Brazil, Argentina} we could have {USA,

Canada, Mexico} generalizing to {North America}, {Brazil,

Argentina} to {South America} and in turn {North America,

South America} generalizing to {America}. In this context,

{USA, Canada, Mexico} forms a generalized anonymity 3-

simplex when generalized as {North America}. This simple

example shows it is possible to build anonymity complexes

based on generalization trees.

What changes, compared to the previous discussion, is

the inclusion relations among the complexes for different

generalizations. As one can imagine the discussion here is

more complicated and requires to consider and extension of

the persistent homology, called zig-zag homology [24]. It

suffice to say, here, that it is possible to build (zig-zag)

persistent diagrams that are similar to the one described

in the previous sections (see Figure 3) thus enabling to

determine various anonimity regimes. For a more detailed

discussion please see the authors’ paper [25].

V. CONCLUSION

This paper introduced a new perspective to k-anonymity

in data privacy based on algebraic topology. In particular,

we addressed the case when the data lies in a metric space.

We demonstrated how tools such as persistence homology

can be applied to efficiently obtain the entire spectrum

of k-anonymity of the database for various values of the

radius of proximity. For this representation, we provided an

analytic characterization of conditions under which a given

representation of the dataset is k-anonymous. Finally, we

discussed how this method can be extended to address the

general case of a mix of categorical and metric data.

In future, it would be interesting to investigate other

notions of privacy using these tools. In particular, applica-

bility of such techniques to dynamic databases would be an

interesting case which naturally arise in control applications.
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