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This paper proposes a modular estimation framework that enhances robustness and
adaptability of legacy filters, such as the standard Extended or Unscented Kalman Filter
(EKF/UKF), in the presence of sudden and unknown events such as sensor failures, unavail-
ability, change of accuracy and out-of-sequence measurements. The framework comprises
of three main outer modules wrapped around a core legacy filter: 1) Measurement gating,
to detect large changes in covariance of sensors and reject their measurements until a new
consistent covariance estimate is obtained; 2) Covariance estimation, to estimate the ac-
curacy of each sensor at all times and; 3) Out-of-sequence processing, to perform optimal,
in terms of minimum mean squared error, estimation when sensor measurements become
out-of-sequence in time for any arbitrary arrival order.

We apply this framework to localize a real mobile vehicle moving in an unknown en-
vironment, equipped with various suites of sensors. The contributions of this paper are
two-fold. First, we demonstrate a successful integration of the out-of-sequence process-
ing algorithm with the other two modules around a standard EKF. Second, we show via
numerical simulations, that under randomly generated events of sensor failure, accuracy
changes, unavailability or delays, our proposed approach performs significantly better than
a simple baseline EKF. We report the results applied to simulated scenarios, as well as on
multiple real data sets.

I. Introduction

A. Motivation

Positioning systems, capable of working without the continuous presence of a Global Positioning System
(GPS), are required for navigation in environments consisting of dense urban areas and man-made struc-

tures as well as indoor, underground and undersea. This type of technology is necessary for autonomous
navigation, for providing more sophisticated position-based services, to enhance asset tracking for security
and safety and to enable effective first-response operations in dangerous environments, just to mention a
few.

The problem of positioning in GPS degraded/denied environment has been extensively researched in
the last 40 years, strongly boosted by the development of the Kalman filter in the 60s, which provided an
efficient implementation of estimators/filters. Although this area can be certainly considered very mature,
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with compelling results available in the literature, solutions are often designed and demonstrated in particular
environments, with particular lighting and weather conditions, either indoor or outdoor, etc. However, as
applications increasingly rely on position information, the filtering and fusion process needs to be capable
of working in any environmental condition, during the day or night, for many consecutive days without the
need of re-calibrating or re-initializing the system.

This has brought a paradigm shift in the development of position and navigation technologies: from
accuracy as the objective to solutions that need to be robust, easy to integrate and accurate. Therefore
solutions not only need to provide an accurate position estimate, but they also need to work even if sensors
change their behavior online in an unknown fashion. The uncertainty on these changes is typically caused
by complex and unforeseeable changes in the environment. For example, a stereo camera with a landmark
detection algorithm will provide the relative position of the landmark from the observer with very different
accuracy when the cameras are pointing directly to the sun, or in fog.

In this paper, we propose a modular estimation framework that enables robust positioning and navigation
under unknown varying sensor characteristics and availability. The proposed scheme can be “wrapped”
around a standard navigation filter, such as EKF or UKF, thus enabling retrofit of existing solutions, and
thus faster and cheaper integration. The limiting factor of considering EKF or UKF can be relaxed by
building Particle Filters in which each of the particle implements the proposed robust and adaptive filter.

B. Related Work

One of the key research areas that deal with varying sensor characteristics during estimation is Adaptive
Kalman Filtering. Seminal works1 and2 propose online techniques to determine the measurement and process
noise covariance matrices. In the case of linear systems with Gaussian noise, these techniques rely on the
whiteness property of the innovations sequence for the filter to be performing optimally. A self-tuning
Kalman filter via stochastic approximations is presented in.3 However, stochastic approximations tend to
be slow to converge and require a good initial guess. More recently, heuristics based on sample averages
have been proposed in literature such as.4,5 These techniques have been demonstrated to work even on
non-linear systems involving the Extended Kalman Filter (see6,7). In8 and in,9 the authors have presented
a fuzzy neural network in conjunction with adaptive extended Kalman Filter to enhance the learning of the
measurement noise covariance. In,10 the authors demonstrate this technique on a low-cost INS/GPS system
and show improvement in the navigation estimation accuracy. In,11 the authors integrate a fuzzy version of
the outlier detection technique used in this paper with adaptive measurement error covariance estimation
and demonstrate results on experimental data from autonomous underwater vehicle trials.

Another key research area which is related to this work is outlier rejection. One of the most popular
techniques in the area of estimation to detect and reject erroneous measurements is gating, known alterna-
tively as the chi-squared test, described in.12–14 This technique is widely used in performing data association,
as shown in.15,16 From the performance point-of-view,17 derives a modified Riccati equation that approxi-
mately quantifies the dependence of the estimation error covariance on parameters such as gate thresholds
and probability of false alarms. Given a set of measurements, false-alarm probability, and a signal-to-noise
ratio, the celebrated Neyman Pearson detector has been known to minimize the false dismissal probability
(cf.18). When the measurement is much weaker compared to the noise, locally optimum detectors have been
proposed.19

In a centralized multisensor system, there are usually different time delays in transmitting measurements
to a central processor. This can lead to situations where measurements from different sensors arrive out-of-
sequence, see Figure 1. This is often referred as the out-of-sequence measurement (OOSM) problem. The
OOSM problem was initially investigated in target tracking applications,20 and thereafter many researchers
have studied the OOSM problem in various areas, such as wireless sensor network,21 robotics22 and naviga-
tion.23 In this paper, we opt for a most recent OOSM algorithm from,24 which is the optimal one, in the
minimum mean square sense, for multiple OOSMs with arbitrary delay and arriving order.

C. Contributions

The contributions of this paper are two-fold. First, we propose an integrated framework comprising of three
main modules that can be easily wrapped around a legacy filter such as an Extended Kalman Filter, to make
the estimation process robust to major disturbances in many operational environments, such as sudden or
gradual changes in measurement error statistics of one or many sensors and random transmission delays.
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Figure 1. Example of out-of-sequence measurements. Measurements are generated at some measurement time
but arrive at the filter at a later arrival time. Because of delays, events (such as on/off of sensors, etc.) the
measurement produced at time κ is received after the measurement produced at time k.

This approach, illustrated in Figure 2, merges a gating block along with a residuals-based covariance learning
scheme, to reject measurements being generated out of excessively large error covariances. The second
block is a covariance update routine which continuously keeps a track of a sensor’s accuracy (whenever the
measurements are available) over time. The third block leverages the most recent advance in out-of-sequence
measurement processing to achieve delay-tolerant navigation. We apply this general framework to a problem
of localizing a mobile vehicle, equipped with different combinations of the following suite of sensors: Inertial
Measurement Unit (IMU), Global Positioning System (GPS), Barometric Altimeter, Magnetic Compass,
Odometer, Inclinometer, Time difference of Arrival sensor, and 2D Laser scanner. Specifically, we focus on
scenarios in which the GPS is either intermittently available or completely unavailable.

Figure 2. A skeleton of the proposed framework. The novelty lies in the integration of the gating and the
covariance update blocks together with a legacy filter such as the EKF to make it robust and adaptive to
changes in sensor accuracies.

Our second contribution is that we demonstrate, via extensive numerical simulations, that under ran-
domly generated events of sensor failure/accuracy changes, our proposed approach outperforms significantly
a standard/legacy baseline EKF. During a typical mission, we consider several stochastically generated un-
known events, in which each sensor is either (i) functioning normally, or (ii) changes its accuracy, or (iii) is
faulty, or (iv) is unavailable, or (v) reports measurements that may be out-of-sequence in time. We estab-
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lish robustness as well as adaptability of our filtering scheme by reporting test results of our approach on
simulated data sets as well as on real data sets. Another salient feature of our approach is that the filtering
scheme uses the IMU to obtain the prediction at each time instant. Therefore, knowledge of the exact motion
model of the vehicle is not necessary to obtain a good estimate of the vehicle’s position and orientation.

D. Organization of this paper

This paper is organized as follows: Section II describes the problem formulation and the technical approach
adopted. Section III describes the results of our approach on both simulated and real data sets. In particular,
for the real data sets, we consider a scenario in which GPS is intermittent and a scenario which GPS is not
available. Finally, the conclusions and future directions are discussed in Section IV.

II. Problem Set-up and Technical Approach

In this section, we present the mathematical model of the system and detail the technical approach.

A. The model

Consider the evolution of a dynamical system given by

ẋ(t) = f(x(t),n(t)),

where x(t) ∈ Rnx is the system state and n(t) ∈ Rnn is the process noise and f(.) is a vector field in Rnx

describing the dynamics of the system for time t ∈ R≥0. Let m be the number of sensors, and let the
measurements from the sensors be generated as per the following equations:

yi(t) = hi(x(t),vi(t)), ∀i ∈ {1, . . . ,m}, (1)

where vi(t) ∈ Rni is the measurement noise, h : Rnx × Rni → Rnyi describes the i-th measurement equation.
We assume that n(.),vi(.) are white Gaussian stochastic processes with zero-mean and mutually independent.

In our navigation problem, four references frames are used: WGS-84 frame, navigation frame, body frame
and senor frame. The ENU coordinate (East-North-Up) is chosen as the navigation frame, the body frame
is defined within our mobile vehicle platform and each sensor mounted on the platform has a unique sensor
frame defined with respect to the body frame. We use a standard six-degrees-of-freedom (6DOF) model by
assuming rigid movement of the vehicle. To mitigate IMU sensor drift, we also include the components of
accelerator and gyroscope biases in the state. The resulting 16 dimensional state vector of our system is

x =
[
NpTB

NvTB
BqTN bTa bTg

]T
,

where NpB = [x, y, z]T and NvB = [vx, vy, vz]
T represent the position and velocity vector of the vehicle

in the navigation frame, BqN = [q1, q2, q3, q4]T is the attitude quaternion presenting the rotation from the
navigation frame to the body frame, ba = [bax, b

a
y, b

a
z ]T and bTg = [bgx, b

g
t , b

g
z]
T denote the accelerometer bias

and gyroscope bias, respectively.
The continuous time dynamic equations with velocity and quaternion components driven by IMU mea-

surements are

N ṗB(t) =N vB(t),
N v̇B(t) = C(BqN (t))T (am(t)− ba(t)− na(t))− Ng,

Bq̇N (t) = −1

2
Ω(ωm(t)− bg(t)− ng(t))

BqN (t),

ḃa(t) = Maba(t) + nba
(t),

ḃg(t) = Mgbg(t) + nbg
(t),

where am and ωm are the respective accelerometer and gyroscope measurements, na and ng are the cor-
responding white Gaussian noises (WGN), C(BqN ) is the direction cosine matrix (DCM) and Ω(ω) is the
skew-symmetric matrix25 and Ng is the gravitational acceleration in the navigation frame. The IMU biases
are modeled as first-order Gaussian-Markov processes driven by WGN nba

and nbg
. The IMU scale factor

error (SFE), while not included in the state, is accounted for by using covariance inflation technique.26
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B. Technical Approach: Robust and Adaptive Filtering

Out of the legacy filters, we adopt the EKF considering its excellent balance between complexity and per-
formance. To achieve robust and adaptive filtering, our navigation solution is constructed in such a way to
capture major disturbances in real world operational environments including outliers, transmission delays
and sudden or slow changing sensors’ accuracy, as well as numerical issues which cannot be ignored in prac-
tice. The detailed algorithm is described in Algorithm 1. We clearly consider the discrete-time version of
the EKF as this is implemented on a computer.

Algorithm 1 Robust Adaptive EKF

if A received measurement is OOSM then
See Algorithm 2.

else
1) Predict using IMU measurements:

x̂(k|k − 1) = fD(x̂(k − 1|k − 1),0)

P(k|k − 1) = F(k − 1)P(k − 1)F(k − 1)T + Q(k − 1)

2) Measurement gating:
Let

νi(k) = yi(k)− hi(x̂(k|k − 1),0)

d =
√
νi(k)′(Hi(k)P(k|k − 1)H′i(k) + Ri(k))−1νi(k)

Then

γi,k =

1 if d ≤ β ,
0 otherwise

3) Update:

Ki(k) = P(k|k − 1)Hi(k)′ · (Hi(k)P(k|k − 1)H′i(k) + R̂i(k))−1

x̂(k) = x̂(k|k − 1) + γi,kKi(k) · (yi(k)− hi(x̂(k|k − 1),0))

P(k|k) = (I− γi,kKi(k)Hi(k))P(k|k − 1) · (I− γi,kKi(k) ·Hi(k))′ + γi,kKi(k)R̂i(k)Ki(k)′

end if
4) Estimate sensor accuracy:
Let ri(k) = yi(k)− hi(x̂(k|k),0)

R̂i(k) =


Ri,nom if k ≤ wi
1/wi

∑k
t=k−wi+1 ri(t)ri(t)

′+

Hi(k)P(k|k)H′i(k) otherwise

1. Prediction

The EKF state prediction is obtained using the IMU measurements and is given by

x̂(k + 1|k) = fD(x̂(k|k),0),

since the noises have zero mean, where fD is the discretization of f. The predicted covariance is

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k),

where F(k) is the Jacobian of fD(x(k),n(k)) evaluated at (x̂(k|k),0), and Q(k) is the process noise covariance.
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2. Measurement Gating

To reject outliers and spurious measurements, measurement gating is used to validate the received measure-
ments. We employ the Mahalanobis distance as the distance measure, which has been shown to be highly
efficient and robust in various applications.14 Specifically, at a time instant k, one has the predicted value of
the measurement hi(x̂(k|k− 1)), the covariance of which equals H(k)P(k|k− 1)H′(k) + Ri(k), where Hi(k)
is the linearization of the measurement function hi around (x̂(k),0) and Ri(k) is the measurement error
covariance at time k. Then, the true measurement yi(k) will be in the following region

Vk ={yi : (yi − hi(x̂(k|k − 1)))′(Hi(k)P(k|k − 1)H′i(k) + Ri(k))−1(yi − hi(x̂(k|k − 1))) ≤ β2} (2)

with a probability determined by the gate threshold β. For a given value of this probability, the threshold
β can be calculated analytically.14 A measurement is valid if lying in the region defined by (2), otherwise it
is rejected.

3. Update

If a measurement passes the gate, then it is used to update the state. Instead of using the standard covariance
update in KF, which can cause loss of symmetry due to numerical errors, we opt for the Joseph form14 for
the covariance update. The symmetry nature of the Joseph form makes it numerically much more stable
than the standard update form.

4. Covariance Estimation

The fourth step consists of performing online covariance estimation to account for the changes in sensor
accuracy. To estimate Ri(k) one candidate approach would be to subtract sample covariance of innovation
νi(k) by H(k)P(k|k − 1)H′(k) (which represents part of the uncertainty in the innovations due to system
dynamics), namely,

R̂i(k) =
1

wi

k∑
t=k−wi+1

νi(k)νi(k)′ −H(k)P(k|k − 1)H(k)′ (3)

However, because of the minus sign in (3), R̂i(k) can become negative definite and hence this approach is
numerically unstable in practice.

We adopted the method from 7 as shown in Algorithm 1, step 4, which guarantees the estimated covariance
is non-negative definite. This approach is based on the following theorem.

Theorem 1. Let r(k) denote the residual of a linear dynamical system, i.e.,

r(k) = y(k)− ŷ(k|k) (4)

where the subscript of sensor index has been omitted for simplicity of notation. Then the measurement noise
covariance R(k) is given by

R(k) = E{r(k)r(k)′}+ H(k)P(k|k)H(k)′ (5)

where operator E represents the expectation, and H(k) and P(k|k)H(k) represent the measurement matrix
and the updated state covariance, respectively.

A proof of Theorem 1 is given in Appendix A. By comparing with (3), one can see that the innovation
ν(k) has been replaced by the residual r(k) and the the predicted covariance P(k|k − 1) has been replaced
by the updated covariance P(k|k).

5. Out-of-Sequence Measurements

In certain applications various sensor measurements are available at different rates and at non-uniform
intervals, arriving at the filter with stochastic time delays, etc. In order to deal with this there is the need
to augment the proposed approach with an extra step that can take care of such situations. We described it
below.
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This step comprises of optimal out-of-sequence measurement updates. The standard Bayesian update for
a regular in-sequence measurement (yk) is given by

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

and it is well known that the optimal implementation of this standard Bayesian update is the Kalman filer
under linear Gaussian (LG) assumption. The Bayesian update with an OOSM (yκ) can be written as

p(xk|y1:k,yκ) ∝ p(xk|y1:k)︸ ︷︷ ︸
known

p(yκ|xk,y1:k−1)︸ ︷︷ ︸
unknown

Hence the key is to obtain the unknown likelihood p(yκ|xk,y1:k−1), which fortunately can be obtained
exactly.27 Under the LG assumption, the optimal implementation of this OOSM Bayesian update can be
found in24 using the complete in-sequence information (CISI) framework. The proposed methodology is
summarized in Algorithm 2. Note that the standard covariance update has to be used here as the Joseph
form does not hold for an OOSM.

III. Results on Simulated and on Real Data Sets

In this section, we present the results of our proposed approach on a simulated as well as on two real
data sets.

A. Simulated Scenario

For the simulations, we consider a mobile vehicle which obeys the following Dubins-like kinematics:28

ẋ = cos θ , ż = uz ,

ẏ = sin θ , θ̇ = uθ ,

where the controls uz, uθ ∈ [−1, 1]. The values of these two controls were pre-chosen as a function of time.
Next, we generated the measurements for each of the sensors using the ground truth, i.e., the true positions
and orientations of the vehicle. E.g., using three consecutive positions, one can determine the acceleration.
Measurements were corrupted with noise of known statistics, but unknown to the estimation.

Five types of events were generated randomly during the course of the simulation and they were unknown
to the filter. The first type was that a sensor functions normally, the second in which a sensor is unavailable,
the third in which the sensor changed its accuracy, the fourth in which the sensor was faulty, and the fifth
in which the sensor’s measurements were out of sequence in time. The accuracy change corresponded to an
increase in the sensor’s measurement noise covariance by a factor of 5, while the fault corresponded to a
factor of 10000.

Initial estimate for the filter was chosen randomly from a neighborhood around the ground truth. Initial
nominal covariances were selected in the vicinity of the true values, and the moving average windows wi
were chosen such that they were close to half the number of sensor measurements in the duration of one
event. The result of Algorithm 1 and Algorithm 2 for one realization of the events is shown in Figure 3.
The plot also shows the corresponding root mean square error (RMSE) in the position with respect to the
ground truth, along with the different events and their temporal generation. Figure 4 shows a plot of the
RMSE averaged over 50 realizations of the events, generated in a Monte Carlo fashion. A video uploaded
along with this paper shows a simulation with additional set of sensors. In this video, the true and the
actual measurement values have been plotted for each sensor. The true vehicle position is shown in red, the
estimated position in green and the gray trajectory is the ground truth.

B. Results on Real Scenario

In this section, we report the results of our approach on data sets obtained from two different real scenarios.
The first scenario is that of a mobile vehicle that has access to GPS, while in the second scenario, GPS signal
is unavailable. In both cases, events related to sensors’ characteristics are generated stochastically, similar
to Section A.
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Algorithm 2 CISI OOSM Processing

Assume tk−l ≤ tκ < tk−l+1 for a l-lag OOSM.
Step 1: Predict using IMU measurements:

x̂(κ|k − l) = fD(x̂(k − l|k − l),0)

P(κ|k − l) = F(k − l)P(k − l)F(k − l)T + Q(k − l)

Step 2: Update x̂(κ|κ) using OOSM yi(κ).

Step 3: Update all the states after tκ up to current time tk using OOSM yi(κ).

for j = k − l + 1 : k do
1) Obtain smoothed state and covariance at time tκ, as well as crosscovariance between tκ and tj.

x̂(κ|j) = x̂(κ|j − 1) + P(j − 1, κ|j − 1)′F(j, j − 1)′ ·P(j|j − 1)−1 [x̂(j|j)− x̂(j|j − 1)]

P(κ|j) = P(κ|j − 1)−P(j − 1, κ|j − 1)′F(j, j − 1)′ ·P(j|j − 1)−1[P(j|j − 1)−P(j|j)]·
P(j|j − 1)−1F(j, j − 1)P(j − 1, κ|j − 1)

P(j, κ|j) = P(j|j)P(j|j − 1)−1F(j, j − 1) ·P(j − 1, κ|j − 1)

2) OOSM gating:
Let

νi(κ) = yi(κ)− hi(x̂(κ|j),0)

d =
√
νi(κ)′(Hi(κ)P(κ|j))H′i(κ) + Ri(κ))−1νi(κ)

Then

γi,j =

1 if d ≤ β ,
0 otherwise

3) Update x̂(j|j, κ) using OOSM yi(κ).

x̂(j|j, κ) = x̂(j|j) + γi,jW(j, κ) [y(κ)−H(κ)x̂(κ|j)]
P(j|j, κ) = P(j|j)− γi,jW(j, κ)S(κ)W(j, κ)′

where

W(j, κ) = P(j, κ|j)H(κ)′S(κ)−1

S(κ) = H(κ)P(κ|j)H(κ)′ + R(κ)

end for

In order to demonstrate the benefit of the proposed method, Algorithm 1, we generate four types of
events related to sensors’ status, namely normal, failure, unavailability and change of accuracy. These events
are modeled in the same manner as in the simulated scenario (see Section A. While the events are generated
off-line, they are completely unknown to the filter both when they occur as well as what the covariance value
is. Figures 5 and 6 show an example of the time trace of the events generated for the two scenarios in this
section.

1. An Intermittent GPS scenario

In this scenario, the mobile vehicle made use of 8 independent sensors including: two 100Hz MEMS based
IMUs, a HMR2300 magnetic compass, an odometer, a barometric altimeter, a Ensco ranging sensor and a
TDOA sensor as well as a SPAN GPS. We begin with the case when sensors behavior is nominal, followed
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Figure 3. Plot of the RMSE during the filter evolution and the corresponding events in time and comparison
of the estimate with the ground truth for simulated scenario.

by randomly generated occurrences of unknown events. The results for the first case are shown in Figure 7.
Clearly, using the GPS measurements, the result is particularly good in this case. However, our focus here
is not accuracy, but showing that the filter performance can be maintained at a reasonable level despite the
presence of multiple unknown events. The simulated events are shown in Figure 5.

Akin to previous subsection, the events are completely unknown to the filter. If the baseline EKF is used
in this case (namely the core filter without gating and covariance update), then the estimated trajectory is
shown in 8(a). This shows that the EKF goes unstable very quickly even if a GNSS is used. Indeed, after the
GNSS becomes unavailable (see Figure 5), as other sensors are experiencing failure/change of accuracy, the
EKF is not capable to fuse the measurement in a consistent way, thereby becoming unstable. The subfigures
on the top-right of Figure 8(a) indicate that all the sensors are used at all time. Thus, the standard EKF
where sensors are more intermittent in their behavior (switching between on/off, failures and change of
accuracy), becomes unstable.

Figure 8(b) shows the same EKF as in Figure 8(a) but with the presence of only the gating step (omitting
step 2 of Algorithm 1). In this case, the sensor measurements which are incompatible with the underlying
model get rejected. As one would expect the results are much better. The time instants at which a sensor
gets gated out is shown as a red dot (indicating the value zero for that particular γ) in the top-right subfigures
of Figure 8(b). Although the result is better compared to the case when no gating is used (the filter does not
diverge), some of the sensors never get used, e.g., the Range sensor (see plots for this sensor always gated).

Figure 8(c) shows the case when the adaptive part (step 3 of Algorithm 1) is active as well. In this
case, measurements that get gated out are not just removed from the filtering process but they are used to
learn the covariance of the sensor. This leads to results that are much better. Note that in this case the
Range sensor gets used, the magnetic compass used at more time instants that the case with only gating.
The barometer in this case is gated out more often, compared to before, as the z-axis estimate is in this
case better than what the barometer can provide and no other sensor (beside the GNSS) can provide z-axis
estimates. Overall, these examples show that the proposed approach can cope with unknown events by
graceful degradation of the performance of the filter. If no gating and covariance update is used, a standard
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Figure 4. Results on different realizations of events generated via Monte Carlo trials. The probabilities of
each event are provided in the table. The RMSE plot is averaged over 50 trials.

EKF goes unstable. Of course, higher accuracy can be obtained by improving the baseline EKF filter (e.g.
by using more sensors, etc.). But we re-emphasize that a more accurate EKF would not be robust and
adaptive to unknown changes.

2. A GPS Denied scenario

This scenario comprises of the following sensor suite: a 100Hz MEMS based IMU, a HMR2300 magnetic
compass, a barometric altimeter, an odometer and a TDOA sensor. This scenario is completely a GPS-denied
one. The picture on the left of Figure 9 shows the result of the robust and adaptive EKF used.

Using a baseline EKF filter (with no gating or adaptive covariance learning) on the corrupted data leads
to the very poor performance as it is shown in Figure 10(a). Note the large error in the velocity that
completely drives the estimate away from the ground truth. In Figure 10(b), we show the filter performance
when only gating (omitting step 3 of Algorithm 1) is used. Due to the large number of the events, the filter
is not capable of providing a very good estimate.

In Figure 10(c), we report the results when not only the gating is active but the covariance update
estimator is also used, namely the results using the proposed approach. In this case, one can clearly see that
the estimate is reasonably accurate, follows the ground truth and compares very well with the baseline filter.

For this scenario, we have also considered the effect of OOSMs. Figure 11 shows the generated unknown
events, where now, as it can be seen in the figure, some sensors produce measurements with unknown
stochastic delays (yellow bar). Using the full estimation framework proposed in this paper, we are able to
be robust to the unknown events and OOSMs producing a reasonably good estimate as shown in Figure 12.

We further challenged our solution by making all barometer measurements to be out of sequence and
the result is still comparable to that in Figure 12. However, the result without OOSM processing exhibited
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Figure 5. Randomly generated events for the Intermittent GPS Scenario. Time is in GPS weeks, for a total
of 15min of data.

Figure 6. Randomly generated events for the GPS denied scenario. Time is in GPS weeks, for a total of about
5 minutes and 20 seconds of data.

a trend of divergence with maximum error over 1500m. Due to the paper length limit, the result of this
scenario is not shown.

In summary, we have demonstrated that in presence of disturbances such as unanticipated changes in
sensors’ properties and random transmission delays, a standard navigation filter as EKF shows poor perfor-
mance (possibly instability) compared to the case when sensors operate at nominal models and no OOSMs
are present. The use of the proposed approach (Algorithms 1–2) significantly enhanced the navigation
robustness in such challenging scenarios and resulted in much less degradation in performance.
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Figure 7. The Intermittent GPS scenario: [Left] Comparison between the ground truth (in pink) and the
estimated trajectory. [Right] 3D view of the estimate (blue) and ground truth (gray) as well as the velocity
and attitude estimates (blue) and ground truth (red). RMSE is 6m.

(a) Baseline EKF filter (without gat-
ing and covariance update) used on the
data corrupted with unknown events.

(b) Robust EKF filter with gating but
without covariance update used on the
data corrupted with unknown events.

(c) Robust and adaptive EKF filter
used on the data corrupted with un-
known events.

Figure 8. Intermittent GPS scenario: Estimation results on real data “corrupted” with unknown events using
various type of estimators. The small windows on the right of the overall position estimate show the sensor
measurements that are used in the filter (blue dots at 1) and that are gated off (red dots at 0). The x-axis
represent the measurement number. As it can be noticed the sampling frequencies are different.

IV. Conclusion and Future Work

We presented an estimation framework capable to deal with real world disturbances including outliers,
transmission delays and sudden or slow changing of sensor accuracy, as well as numerical issues. The proposed
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Figure 9. The GPS denied scenario: [Left] Comparison between the ground truth (in pink) and the estimated
trajectory. [Right] 3D view of the estimate (blue) and ground truth (gray) as well as the velocity and attitude
estimates (blue) and ground truth (red). RMSE is 105m.

(a) Baseline EKF filter (without gat-
ing and covariance update) used on the
data corrupted with unknown events.

(b) Robust EKF filter with gating but
without covariance update used on the
data corrupted with unknown events.

(c) Robust and adaptive EKF filter
used on the data corrupted with un-
known events.

Figure 10. GPS-denied scenario: Estimation results on real data “corrupted” with unknown events using
various type of estimators. The small windows on the right of the overall position estimate show the sensor
measurements that are used in the filter (blue dots at 1) and that are gated off (red dots at 0). The x-axis
represent the measurement number. As it can be noticed the sampling frequencies are different.

approach features three critical components on top of an existing (legacy), low-complexity filter (e.g. Kalman
filter, Extended Kalman Filter), thereby making it much more robust and adaptive in practice. We applied
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Figure 11. GPS-denied scenario: Randomly generated events including OOSM. Time is in GPS weeks.

Figure 12. GPS-denied scenario: Robust and adaptive EKF filter used on the data corrupted with unknown
events including OOSM.

this approach to simulated as well as real data sets. In all scenarios, we have observed that the navigation
robustness was enhanced substantially.

An important future direction we plan to pursue, and for which some preliminary results are available
in,29 is to have a solid theoretical analysis of the proposed framework. Although we have shown it works
very well under a large amount of possible events, it is not known under what conditions the filter will be
stable and its performance, in terms of, for example, the trace of the error covariance.
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A. Proof of Theorem 1

Proof: First, express residue r(k) defined in (4) with respect to the innovation ν(k)

r(k) = y(k)−H(k)x̂(k|k)

= y(k)−H(k)[x̂(k|k − 1) + K(k)ν(k)]

= y(k)−H(k)x̂(k|k − 1)︸ ︷︷ ︸
ν(k)

−H(k)K(k)ν(k)

= [I −H(k)K(k)]ν(k) (6)

where K(k) is the Kalman gain, and hence the covariance of r(k) is given by

E{r(k)r(k)′} = [I −H(k)K(k)]E{ν(k)ν(k)′}[I −H(k)K(k)]′

= [I −H(k)K(k)]S(k)[I −H(k)K(k)]′

= S(k)−H(k)K(k)S(k)− S(k)K(k)′H(k)′ + H(k)K(k)S(k)K(k)′H(k)′ (7)

Substituting K(k) = P(k|k − 1)H(k)′S(k)−1 into (7) (except for the last term) yields

E{r(k)r(k)′} = S(k)−H(k)P(k|k − 1)H(k)′ −H(k)P(k|k − 1)H(k)′ + H(k)K(k)S(k)K(k)′H(k)′

= S(k)−H(k)P(k|k − 1)H(k)′ −H(k)[P(k|k − 1)−K(k)S(k)K(k)′]H(k)′

= S(k)−H(k)P(k|k − 1)H(k)′ −H(k)P(k|k)H(k)′ (8)

Finally, the right hand side (RHS) of (5) can be rewritten by using (8)

RHS = E{r(k)r(k)′}+ H(k)P(k|k)H(k)′

= S(k)−H(k)P(k|k − 1)H(k)′ −H(k)P(k|k)H(k)′ + H(k)P(k|k)H(k)′

= S(k)−H(k)P(k|k − 1)H(k)′

= R(k)

= LHS (9)

Q.E.D
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