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Abstract

The interrelationship between control and communication theory is becoming of fundamental importance in many distributed
control systems, such as the coordination of a team of autonomous agents. In such a problem, communication constraints
impose limits on the achievable control performance. We consider as instance of coordination the consensus problem. The
aim of the paper is to characterize the relationship between the amount of information exchanged by the agents and the rate
of convergence to the consensus. We show that time-invariant communication networks with circulant symmetries yield slow
convergence if the amount of information exchanged by the agents does not scale well with their number. On the other hand,
we show that randomly time-varying communication networks allow very fast convergence rates. We also show that, by adding
logarithmic quantized data links to time-invariant networks with symmetries, control performance significantly improves with
little growth of the required communication effort.
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1 Introduction

Multi-agent systems have many advantages compared
to single-agent systems, including improved flexibility,
sensing and reliability. When it comes to design con-
trol strategies for coordination, mobile agent systems
need to be able to exchange information, such as the
position, velocity, or other relevant quantities to solve
a given task. For the coordination to be effective they
need to rapidly reach a consensus on the shared data.
The problem of designing strategies that guarantee the
shared data to convergence (asymptotically) to common
value is called coordinated consensus or state agreement
problem. From the seminal work by Tsitsiklis [43],
Olfati-Saber and Murray [34] and Jadbabaie et al. [22],
in which the consensus problem was firstly defined, in
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system theoretical terms, the field has rapidly grown
and attracted the attention of many researchers, see for
example [41,16,24,17,37,39,27], and the recent survey
paper [33]. The interest in these type of problems is not
limited to the field of mobile agents coordination but
also involves problems of synchronization [40,26,25] and
distributed estimation [29,8].

Most of the literature is concerned with the design of
control strategies that yield consensus. In the classical
framework, each agent is modelled as an omnidirec-
tional antenna with a short reliable communication
range [22,41,9]. This results in a communication net-
work whose topology changes with the agents’ position.
Design and analysis of decentralized control laws for
these systems are in general hard tasks. One of the
main difficulties is that the connectivity of the net-
work is not guaranteed to be preserved under dynami-
cal constraints. Simplified models have been proposed
in [22,34,36] where the authors consider switching sys-
tems with switching rule that does not dependent on
the agents’ position and for which they derive only suf-
ficient conditions for consensus. In [31], in the context
of multi-agent flocking, virtual potential functions are
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also used in order to constraint the agents to form par-
ticular lattices, thus relaxing the connectivity condition
of the networks. A similar approach is considered in [41]
where authors use tools from non-smooth analysis to
design and analyze consensus controllers. Robustness
to communication link failure [9] and the effects of time
delays [34] have been also considered.

The aim of this paper is to characterize the relation-
ship between the amount of information exchanged by
the agents and the achievable control performance. We
model the communication network by a directed graph,
in which an arc represents information transmission
from one agent to another one. With this model the
amount of information exchanged, or communication
effort, is related to the number of neighbors of each
agent. If we consider convergence rate to the average
value of the initial conditions as control performance
index, we expect that the more the graph is connected
the better the performance. The main result of the pa-
per is a mathematical characterization of this fact.

We assume that the graph topology is independent of
the relative agents’ positions and we analyze both de-
terministic time-invariant communication graphs (as
in [16,39,17]) and stochastically varying communication
graphs (as in [21]). Furthermore, since the focus of the
paper is on how communication affects coordination,
we assume that the agents are described by a first or-
der model, as considered in [22,34,9]. This results in a
tractable mathematical problem although some ideas
can be partially extended to more general linear models.
We first study time-invariant communication networks.
Under some assumptions, described in sections 2 and 3,
it turns out that weighted directed graphs, for which
the adjacency matrix is doubly stochastic, are commu-
nication graphs that guarantee the average consensus,
with a degree of efficiency that is related to the spectral
properties of such matrix. Such matrix can be inter-
preted as a Markov chain. The consensus convergence
rate turns out to be related to the mixing rate of the
chain, for which bounds are available in literature [4].
Here we have gathered them and presented from a dif-
ferent viewpoint. Spectral properties of doubly stochas-
tic matrices can be characterized in a easier way if we
impose symmetries on the matrices themselves, and
thus on the associated communication graph. Markov
chains and graphs satisfying symmetries, called Cayley
graphs, are widely studied in the literature [3,28,44]. It
is known that symmetries described by Abelian groups
yield rather poor convergence rates [2]. By modelling
the communication network as Cayley graphs defined on
Abelian groups we determine a new bound on the con-
sensus convergence rate. This extends available bounds
on the mixing rate of Markov chains defined on such
groups [11,4,38]. The main result, presented in section 4,
shows that, imposing symmetries in the communication
network, and thus in the control structure, yields con-
vergence rates that degrades, as the number of agents
increases, if the amount of information exchanged by
the agents does not scale well with their total number.

The idea of imposing symmetries on the communication
graph is not new [10,35,39]. In particular in [39] the au-
thors show, for particular symmetries, that it is possible
to obtain better performance by increasing the number
of incoming arcs on each vertex. Further results have
been obtained in [8]. In this contribution we extend
these results to a broader class of graphs with symme-
tries and we propose a tight bound on the performance
that is achievable in this case.

In section 5 we consider stochastically time-varying so-
lutions. In these strategies the communication graph
is chosen randomly at each time step over a family of
graphs with the constraint that the number of incoming
arcs in each vertex is constant. A mean square analysis
shows that we can improve the convergence rate ob-
tained with fixed communication graphs. This fact con-
tinue to hold true even if the random choice is restricted
to families of Cayley graphs. In this case, compared to
time-invariant solutions, imposing symmetries does not
yield a performance degradation. Similar analysis has
been proposed in [21,8] where a different random time-
varying communication graph is considered.

Another important contribution of the paper, described
in section 6, consists in using other types of data trans-
mission in coordinated control. More precisely, we in-
troduce in the communication graph another type of
arc that represents transmission of logarithmic quan-
tized data. Exact data transmission is very expensive
with respect to the required communication rate and
it is well-known [13,14] that logarithmic quantization
allows a more efficient use of the available communica-
tion bandwidth. A preliminary analysis of coordinated
control strategies involving logarithmic quantized data
transmission has been proposed in [23]. The analysis is
very complicated in general whereas it is tractable for
Cayley graphs. Through some examples it is showed
that logarithmic quantized data transmission improves
substantially the control performance with a limited
increase of the total bandwidth.

2 Problem Formulation

Consider N > 1 identical systems whose dynamics are
described by the following discrete time state equations

+ _
T, =T+ U

i=1,...,N,

where x; € R is the state of the i-th system, = repre-
sents the updated state and u; € R is the control input.
More compactly we can write

=2+, (1)

where z,u € RY. The goal, in the consensus problem, is
the design of a feedback control law u = Kx with K €
RN*N gsuch that, for any initial condition 2(0) € RY,
the closed loop system xt = (I + K)z yields

lim z(t) = al (2)
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where 1 := (1,...,1)” and where « is a scalar depend-
ing on z(0) and K.

The fact that in the matrix K the element i, j is differ-
ent from zero, means that the system 7 needs the state of
the system j in order to compute its feedback action and
thus communication needs to occur between the systems.
A good description of the information flow required by
a specific feedback K is given by the directed graph Gx
with set of vertices {1,..., N} in which there is an arc
from j to ¢ whenever in the feedback matrix K the ele-
ment K;; # 0. Gk is said to be the communication graph
associated with K. Conversely, given any directed graph
G with set of vertices {1, ..., N}, we say that a feedback
K is compatible with G if Gk is a subgraph of G (we use
the notation Gx C G). We say that the consensus prob-
lem is solvable on a graph G if there exists a feedback K
compatible with G and solving the consensus problem.
From now on we always assume that G contains all loops
(i,1) since each system has access to its own state.
With such model of the network, we are interested in
obtaining a matrix K compatible with a given graph,
yielding the consensus and maximizing a suitable per-
formance index. The simplest control performance index
is the exponential rate of convergence to the consensus
point. Clearly, any effective feedback matrix K must en-
sure that nonzero states having equal components cor-
respond to equilibrium points of the closed loop system,
because in this case no control action is necessary. This
happens if and only if K1 = 0. From now on we impose
this condition on K. In this context it is easy to see that
the consensus problem is solved if and only if the follow-
ing conditions hold: (i) 1 is the only eigenvalue of I + K
of modulus 1, it has algebraic multiplicity one and 1 is
its eigenvector; (ii) all the other eigenvalues are strictly
inside the unit disk centered in 0. Under these conditions
the convergence rate can be defined as follows. Let P be
any matrix such that P1 = 1 and assume that its spec-
trum o(P) is contained in the closed unit disk centered
in 0. We define the essential spectral radius of P as

p(P) = max{|\|s.t. A e o(P)\ {1}}.  (3)

Asin [33], the goal this paper is to clarify the relation be-
tween the graph connectivity and p(P). An interesting
particular case considered in the literature is the average
consensus [34]. This corresponds to a situation where
the control law yields the consensus at the average of the
initial states: such control laws are called average con-
sensus controllers. It is easy to see that K is an average
consensus controller if and only if 17K = 0: indeed, in
this case, we have that 17z(t) = 172(0) for all . Notice
that this condition is automatically true for symmetric
matrices K satisfying K1 = 0. From this choice of per-
formance we can formulate the following control prob-
lem: given a graph G, find a matrix K such that K1 = 0,
17K =0, Gk C G and minimizing p(I + K).

When we are dealing with average consensus controllers
it is meaningful to consider the displacement from the

average, or disagreement vector as defined in [34],
A(t) = z(t) — (N'172(0)) 1. (4)
A(t) satisfies the closed loop equation

At =(IT+K)A

) (5)
17A(0) =0.

The index p(I + K) seems in this context appropriate

for analyzing how performance is related to the commu-

nication effort associated to a graph.

3 Doubly Stochastic Matrices in Consensus

If we restrict to control laws K making I + K a non-
negative matrix, namely a matrix with all elements non-
negative, condition K1 = 0 imposes that I + K is a
stochastic matrix. If, moreover, we also have 17K = 0,
then I+ K is doubly stochastic. Since the spectral struc-
ture of stochastic and doubly stochastic matrices is quite
well known, this observation allows to understand eas-
ily what conditions on the graph ensure the solvability
of the consensus problem. To exploit this we need to re-
call some notation and results on directed graphs (the
reader can further refer to textbooks on graph theory
such as [20] or [12]).

Fix a directed graph G with set of vertices V' and set of
arcs £ C V x V. The adjacency matrix Ag is a {0,1}-
valued square matrix indexed by the elements in V' de-
fined by letting (Ag);; = 1 if and only (7, 7) € £. Define
the in-degree of a vertex j as indeg(j) := >, (Ag)i; and
the out-degree of a vertex i as outdeg(i) := >_;(Ag)i;.
Vertices with out-degree equal to 0 are called sinks.
The in-degree matrix Dg is a diagonal matrix such that
(Dg);; = indeg(j) for all j € V. A graph is called in-
regular of degree k if each vertex has in-degree equal to k.
A path in G consists of a sequence of vertices 417y ...... .
such that (ig,ip11) € € for every £ = 1,...,7r — 1; iy
(resp. i,) is said to be the initial (resp. terminal) vertex
of the path. A cycle is a path in which the initial and
the terminal vertices coincide. A vertex i is said to be
connected to a vertex j if there exists a path with initial
vertex i and terminal vertex j. A directed graph is said
to be connected if, given any pair of vertices ¢ and j, ei-
ther 7 is connected to j or j is connected to i. A directed
graph is said to be strongly connected if, given any pair
of vertices ¢ and 7, ¢ is connected to j.

Given any directed graph G we can consider its strongly
connected components, namely maximal strongly con-
nected subgraphs Gi, k = 1,...,s, with set of vertices
Vi €V and set of arcs & = €N (V) x Vi) such that the
sets Vj, form a partition of V. The various components
may have connections among each other. We define an-
other directed graph Tg with set of vertices {1,...,s}
such that there is an arc from h to k if there is an arc
in G from a vertex in Vj to a vertex in V},. It can be
shown that Ty is a graph without cycles. The following



proposition is the straightforward consequence of stan-
dard results on stochastic matrices [19, pag. 88 and pag.
95]. See also [36] for an analogous result.

Proposition 1 Let G be a directed graph and assume
that G contains all loops (i,1). Then, the consensus prob-
lem is solvable on G iff Tg is connected and has only one
sink vertex. Moreover, if the above conditions are satis-
fied, any K such that I + K is stochastic, Gx = G and
Ki; # —1 for every i = 1,...,n solves the consensus
problem.

When the graph G satisfies the properties of Proposi-
tion 1, a particularly simple solution of the consensus
problem can be obtained by taking K = D' AL — I.
Again, if we restrict to K such that I + K is nonneg-
ative, we can relate the existence of average consensus
controllers to the structure of the graph by mean of stan-
dard results on stochastic matrices.

Proposition 2 Let G be a directed graph and assume
that G contains all loops (i,i). Then, the average con-
sensus problem is solvable on G iff G is strongly con-
nected. Moreover, if the above conditions are satisfied,
any K such that I + K is doubly stochastic, Gx = G and
K;; # —1 for everyi = 1,...,n solves the average con-
sensus problem.

Notice that, in the special case when the graph G is
undirected, namely (7, j) € £ if and only if (5,%) € £, we
can find solutions K to the consensus problem that are
symmetric and that therefore are automatically doubly
stochastic, see [33] for details.

When P is a stochastic matrix, the problem of minimiz-
ing the essential spectral radius p(P) or, equivalently, of
maximizing 1 — p(P) (which is called the spectral gap of
the associated Markov chain) over the matrices P’s com-
patible with a given graph is a classical problem in the
theory of Markov chains and recently some very effective
algorithms have been proposed for this maximization in
the case when P is a symmetric matrix [7].

4 Symmetric Controllers

The analysis of the consensus problem and the corre-
sponding controller synthesis becomes more treatable if
we limit our search to graphs G and matrices K exhibit-
ing symmetries. We show, however, that these symme-
tries limit the achievable performance.

In order to treat symmetries on a graph G in a general
setting, we introduce the concept of Cayley graph de-
fined on Abelian groups [3,2]. Let G be any finite Abelian
group (internal operation will always be denoted +) of
order |G| = N, and let S be asubset of G containing zero.
The Cayley graph G(G,S) is the directed graph with
vertex set G and arc set £ = {(g,h) : h — g € S}. Notice
that a Cayley graph is always in-regular, the in-degree
of each vertex is |S|. Notice a Cayley graph G(G,S) is

strongly connected if and only if the set .S generates the
group G. If S is such that —§ = S we say that S is
inverse-closed. In this case the graph obtained is undi-
rected. Symmetries can be introduced also on matrices.
Let G be any finite Abelian group of order N. A matrix
P € RE*% is said to be a Cayley matrix over the group
G if P;; = Piyp jqn forall i,j,h € G. The generator of
a Cayley matrix P is the function 7 : G — R such that
P; ; = m(i—j). Notice that, if 7 and 7’ are generators of
the Cayley matrices P and P’ respectively, then m + 7’
is the generator of P + P’ and 7 x «’ is the generator
of PP', where (7 7')(i) := ;.o m(j)7' (i — j) for all
i € G. This shows that P and P’ commute. Notice fi-
nally that, if P is a Cayley matrix generated by m, then
Gp is a Cayley graph with S = {h € G : w(h) # 0}.
Moreover, it is easy to see that for any Cayley matrix
P we have that P1 = 1 if and only if 17 P = 17. This
implies that a Cayley stochastic matrix is automatically
doubly stochastic. In this case the function 7 associated
with the matrix P is a probability distribution on the
group G. Given a Cayley graph G we can define

pgayley = min{p(I+K)|I+ K Cayley stochastic, Gx C G} .

It turns out that pgayley

in many cases. Moreover, it clearly holds that pg
pdgs. Before continuing we give some short background
notions on group characters and on harmonic analysis
on groups, which are the basis of our main results.

can be evaluated or estimated
ayley >

4.1 Cayley stochastic matrices on finite Abelian groups

We briefly review the theory of Fourier transform over
finite Abelian groups (see [42] for a comprehensive treat-
ment of the topic). Let G be a finite Abelian group of
order N, and let C* be the multiplicative group of the
nonzero complex numbers. A character on G is a group
homomorphism x : G — C*, namely a function x from
G to C* such that x(g + h) = x(g)x(h) for all g, h € G.
Since we have that x(g)Y = x(Ng) = x(0) = 1 for any
g € G, it follows that y takes values on the N*"-roots
of unity. The character xo(g) = 1 for every g € G is
called the trivial character. The set of all characters of
the group G forms an Abelian group with respect to the
pointwise multiplication. It is called the character group
and denoted by G. The trivial character Xo is the zero of
G. Moreover, G is isomorphic to G, and its cardinality
is N. If we consider the vector space C¢ of all functions
from G to C with the canonical Hermitian form

< f1, fa >= Zfl(g)fQ(g)*u

geG

it follows that the set {N~/2y | x € G} is an orthonor-
mal basis of CC. The Fourier transform of a function
f: G — Cis defined as

f:G=C, f)=> x(-9)f(9)-

geG



Fix now a Cayley matrix P on the Abelian group G
generated by the function # : G — R. The spectral
structure of P is very simple. To see this, first notice that
P can be interpreted as a linear function from C¢ to
itself considering, for f € CY, (Pf)(g) :== 3, Pynf(h).
It is easy to see that each character y is an eigenfunction
of P with eigenvalue #(x) (notice that yo corresponds
to 1). Since the characters form an orthonormal basis it
follows that P is diagonalizable and its spectrum is given
by o(P) = {#(x) | x € G}. We can interpret a character
X as a linear function y : C — C% : z — zx. Its adjoint
is the linear functional y* : C“ — C f —< f,x >. With
this notation, N~!yx* is a linear function from C¢ to
itself, projecting C“ onto the eigenspace generated by
X- In this way, P can be represented as

P=> &N ""xx* (6)

xe@

Suppose now that P = I + K is the closed loop matrix
of the system. The displacement A(t) (which evolves
according to (5)) satisfies

1AM = [[P*AO)]]* =

¥ 3 I

X#xO

This shows in a very simple way, in this case, the role of
p(P) = n;ax |7 (x)| in the rate of convergence.
X7Xo0

4.2 The essential spectral radius of Cayley matrices.

The particular spectral structure of Cayley matrices al-
lows to obtain asymptotic results on the behavior of the
essential spectral radius p(P) and therefore on the rate
of convergence of the corresponding control scheme. Let
us start from some examples.

Example 3 Consider the group Zy and the Cayley
graph G(Zn, S), where S = {0,1}. Consider the proba-
bility distribution m on S described by w(0) = 1 — k and
(1) =k, where k € [0,1]. The characters are given by

P25 405

xe(j) =T, jelZy, £=0,...,N—1.

The Fourier transform of m is

0) = ZX(—

geSs

7rg)=1—k—|—k’e_i%re,

with £ = 1,...,N — 1. It can be shown that we have
consensus stability if and only if 0 < k < 1 and, in this
case we have

pgayley:mm max |1 —k+ ke IN¢

k' 1<¢<N-1

)< A0),x > 7

The optimality is obtained when £ = 1 and k = 1/2

yielding

1 1 27\ \ ? w2 1
Cayley _ ~1
Pg _<2+2COS<N>> - 2 N2

where the last approximation is for N — oo.

Example 4 Consider the group Zy and the Cayley
graph G(Zy, S), where S = {—1,0,1, }. For the sake of
simplicity we assume that N is even; similar results can
be obtained for odd N. Consider the probability distri-
bution w on S described by 7(0) = ko, w(1) = k1, and
m(—1) = k_1. The Fourier transform of m is in this case
given by

9) = ko + kie R4 ke R

=> x(-
geS

with =1,...,N — 1. We thus have

ayl .
p(ghy %Y =  min max
(ko,k1,k—1) 1<E<SN-—1

ko + k‘le_i%rl + /4}_161.27”2
Symmetry and convezity arguments [6] allow to conclude
that a minimum is of the type kv = k_1. With this as-
sumption the minimum is achieved for

l—cos(%”) 1
kO_Sfcos(%’T)’ kl_k_l_?)fcos(%”)

and we have

. 1+ cos (2—”) 1
Cayley: N ~1_9 7
g 3 —cos (%) w N2 (7)

where the last approximation is meant for N — oo.

Notice that in the first example the optimality is ob-
tained when all the nonzero elements of 7 are equal. This
is not a general feature since the same does not happen
in the second example. Notice moreover that in this ex-
ample, as N tends to infinity, the optimal solution tends
to ko = 0,k; = k_1 = 1/2. The case of communication
exchange with two neighbors (ex. 4) offers a better per-
formance compare to the case with one neighbor (ex. 3).

However, in both cases pgayley — 1 for N — +o0. This
fact is more general: if we keep bounded the in-degree,
the essential spectral radius for Abelian stochastic Cay-
ley matrices always converges to 1. This negative behav-
ior has already been noticed in the literature [6,39,30,8].
In [30] it is shown that some random rewiring can cor-
rect this slow convergence rate. The next result provides
a bound which proves that this bad performance is a
general feature of this type of algorithms.



Theorem 5 Let G be any finite Abelian group of order N
and S C G be a subset containing zero. Let moreover G be
the Cayley graph associated with G and S. If |S| = v+1,

then

pg™ Y =1 - N7, (8)

where C > 0 is a constant independent of G and S.

To prove it we need the following technical lemma.

Lemma 6 Let T = R/Z = [-1/2,1/2][. Let 0 < § <
1/2 and consider the hypercube V = [, 8]* C T*. For
every finite set A C T such that [A] > 57k there exist
T1, To € A with T, 7é To such that Ty —Zo € V.

PROOF. For any z € T and ¢ > 0, define the set
L(z,0) = [z, +0)+ZCT.

Observe that for all y € T, L(z,d) + y = L(z + vy, 9).

Now let = (Z1,...,7x) € T* and define

k

L(z,0) =[] L(z,0) .

i=1

Also in this case we observe that L(Z,d)+y = L(Z+7,0)
for every §j € T*. Consider now the family of subsets

(L(z,6), 7€A}.

We claim that there exist Z; # Zo in A such that
L(Z1,0) N L(Z2,0) # (. Indeed, if not,

e (| i) = Somis

where m(-) is the Lebesgue measure on T* and
where we used the hypothesis |A| > 6~*. However,
since all L(Z1,6) are closed, it is not possible that
m (Uzea L(Z1,6)) = 1. Notice finally that

= |A|0% > 1

L(Z1,8) N L(Z2,0) # 0 < L(0,6) N L(Z2 — Z1,8) # 0
S T9—T1 V. O
PROOF. [Theorem 5] With no loss of generality we
assume that G = Zy, @...®Zy, . Let 7 be a probability
distribution supported on S. Let P be the corresponding
stochastic Cayley matrix. Its eigenvalues are given by

Ni—1
Z Z (k1 ezf\,—qklél . 'eifv—’;krlr
y 7 )
kl_O
where £ = (£1,...,/,) € G. Denote by k7 = (k?,... ki),
forj =1,...,v, the non-zero elements in S, and consider

the subset of T":

A= (_ k;f' _Tl k;f) + 771 €T, }

1=

Let § = ([, N:)~'/* and let V be the corresponding
hypercube in T defined as in Lemma 6. We now show
that there exists £ = (¢1,...,4,) € G, £ # 0 such that

"y "y
AL e 7" .
<i=1 NZ ’ 71 NZ ) ! =V (9)

i—1

We consider two cases.

(1) If there exists £ = (¢1,...,4,) € G, £ # 0 such that

"y Ny
ALY ) +zv=0eV (10
(ilNi’ 7 Ni>+ ) 1o

=1

then clearly we can conclude. o
(2) If (1) does not hold, it follows that different ¢', £ €

G yield
Uy =y Wf)
—= +7" #
(i_l N i=1 N,
" AN
< TZ ¥ >+Z
i=1 v i=1 v

This implies that [A] = [[; N; = 7. By Lemma
6 we conclude that there exist two different ¢/, ¢ €
Zn, X -+ X Zy, such that

—~ kL —~ kL] v
(s 55)

i1 i=1
AN TAY
i=1 i=1
It is now sufficient to consider £ = ¢ — " #0.

Consider now the corresponding eigenvalue A(£). From

cosx > 1 — 22/2, its norm can be estimated as
v ) v ) 2
A > 7(0) + ) (k] ... k) — ZF(’C{,---,ki)Nz/V
j=1 j=1
> 1972
>1-27 N2/

and so we can conclude. O

Theorem 5 in particular implies that, if we consider a se-
quence of Abelian Cayley graphs G(Gn, Sn) such that
|Gn| = N and |Sn| grows less then logarithmically in
N and we consider a sequence of Cayley stochastic ma-
trices Py compatible with G(Gn, Sn ), then, necessarily,
p(Py) converges to 1. This had already been shown, for
adjacency matrices, in [2]. Notice that in Example 4 we
have that v = 2 and we have an asymptotic behavior



pgayley ~ 1 —272N~2, while the lower bound of Theo-

rem 5 is, in this case, 1 — 272N !, In the following ex-
ample we show that the result of Theorem 5 is tight.

Example 7 Consider the group Z where we suppose
that N = MY. Consider the Cayley graph G(Zn,S),
where S = {0,1, M, M? ... , MY~} and assume that the
probability distribution T on S is given by w(i) = (v+1)~*
for alli € S. The Fourier transform of m is

1 it h
1 Z piEMe
v 1 ( h=0

with ¢ = 1,...,N — 1. We will show that, for all { =
1,..., N — 1 we have that

#(xe) =D x(=g)m(g) =

ges

1 1

EDESSYE (11)

IT(xe) <1

We prove it by induction on v. The case v = 1 follows
from Ezxample 3. Assume now that the assertion holds
forv —1. Let by, 01 such that0 < ¢y <M —1,0</, <
MY~ — 1 and ¢ =€y + M{y. If by # O then

1 Com prv—1 v=2 Con o h
17 (xe)| < ‘1+ele o4 L |3 et
vl v+l
<! ‘1+ej%e° +V_1
v+l v+1

Since (11) holds for v =1 we have that

1 om
11 J 37 bo
2‘ +e

<1-Z—
=2

and hence

ro < 2 (1oL 1) ot 11
A 2 oty w1 o1 1
XOU= 7 oM2) T U1 T U1

Ifly =0, then £ = M¥, and so

1
v+1

17 (xe)l =

v—2 .\
Y 3
2+ E elMV*IM Zl
h=0

1 v—2 o, N 1
v P v+1

From the inductive hypothesis it follows that

1 v—2 ,
L
14

h=0

<

v
v+1

Hence

17 (xe)| € —2 11 +L<1fii
“v+1 v M? v+1— v+1M?2

This bound proves that there exists a circulant graph G
with v incoming edges in any vertex such that

. 1 1
Cayley <1—
P S T N

proving in this way that the bound proposed by the previ-
ous theorem is tight.

The question at this point is the following: Is the Cayley
structure on the matrix or the Cayley structure on the
graph that prevents to obtain good performance? We
conjecture that for doubly stochastic matrices supported
on Abelian Cayley graphs the bound (8) continues to
hold. What about other graphs? An easy way to restrict
to doubly stochastic matrices is by imposing that they
are symmetric and so that the corresponding graphs are
undirected. If A is the adjacency matrix of a v-regular
undirected graph, then, P = v~ ! A is doubly stochastic.
For these graphs, we recall an asymptotic lower bound
by Alon and Boppana [1] on the second eigenvalue

Vv —1
liminf p(P) > vol ,

N—+co 14

where the lim inf is intended to be performed along the
family of all v-regular undirected graphs having N ver-
tices. Ramanujan graphs (see [28] and references therein)
are those v-regular undirected graphs achieving the pre-
vious bound, namely such that p(P) = 2v=1/v —1.
Hence, through these graphs, it would be possible to
keep the essential spectral radius bounded away from 1,
while keeping the degree fixed (see also [32]). In fact,
there are plenty of Ramanujan graphs (for instance any
complete graph), but it is still an open problem if for any
N and v there exists a Ramanujan graph with NV ver-
tices and degree v. The available constructions are quite
complicated and the fact that they strictly depend on
the choice of particular number of vertices makes them
not so interesting from our point of view. However, it is
interesting to notice that graphs behaving similarly to
the Ramanujan ones are not so unlikely. Indeed Fried-
man [18] showed that for v sufficiently large and fixed,
in the average, p(P) with P = v~! A, remains bounded
away from 1 as N — 4o0.

5 Time-varying Strategies

In the previous sections we showed that controllers
with symmetries behave quite poorly. One possibility
to achieve better performance is to resort on Ramanu-
jan graphs or to undirected regular graphs generated
randomly. An alternative way to increase performance,
while maintaining the symmetry of the controllers, is by
a time-varying strategy in which at every time instant
the communication graph is chosen randomly in a set
of Cayley graphs. Such strategies yield a mean square
convergence rate that is higher and, more importantly,
independent of the number of systems.



5.1  Time-varying Cayley Graphs

Fix an Abelian group G and a number v < |G|. We
consider a sequence of subsets S; C G randomly gen-
erated as follows. Let a;(t), i = 1,...,v, be v indepen-
dent sequences of independent random variables tak-
ing value on G and uniformly distributed in such a set.
We put Sy = {ag(t) = 0,a:1(t),...,a,(t)}. Notice that
in S; there might be repetitions and so its cardinality
may be less than v + 1. Fix kg, k1, ..., k, > 0 such that
> y k; = 1 consider the sequence of probability distri-
butions m; on G supported on the sequence of sets Sy
defined by m¢(g) = k; if ¢ = ¢;(t). Let P; be the stochas-
tic Cayley matrix associated with ;. If we consider the
feedback matrix K; := I — P;, we obtain the closed loop
system becomes z(t + 1) = P, x(t), which is an instance
of jump Markov linear system [15,5]. We assume z(0)
to be a r.v. independent of the processes «;(t), in this
way the state x(t) becomes a random process. We now
consider as before the displacement from the average
A(t) := z(t) — N~11172(0), which is governed by the
same iterative equation as P; yielding

A(t) = f[ P.A(0), (12)

where A(0) is now a random variable taking values on
RY such that < A(0), xo >= 0 and independent of the
set of variables {a;(¢)}. In this probabilistic context it is
natural to study the asymptotic behavior of E||A(¢)]|*:

Proposition 8

t

E[A@)P = | D& EIAO)]P.
=0
PROOF. Usingrepresentations (6) and (12), we obtain

iAW = Y [T [I#007] 58l < A©). x> 2

X#Xo 5=1

Since 7 (x) = ko + Y kjx(—a;(t)), we obtain
j=1

B {17 C0I| = k3 + 3 koks [B (o (8))) + E (o (1))

505 ke (o (8) (e (1)]

j=1t=1
It is immediate to verify that E[x(c;(t))] = 0 when

X # Xo, E[x(a;(t))x(ce(t))”] = 0 when j # ¢ and
E[|x(a;(t))|?] = 1. Hence,

E |70 =k + Yk =Dk, vx#0.
j=1 §=0

This yields the result. O

Notice that

v v 1
. 2 _ _
min jz:;)kj kao,;kj—l =T

and it is obtained by choosing k; = 1/(v + 1) for all j.
With this choice we finally obtain

1

BIAOIE = (1 ) BIAOIP.

This performance is much better than what we had ob-
tained so far: in this case the rate of convergence is con-
stant with respect to V.

Remark 9 As any average result, it is not immediately
evident how the average computation above reflects on
the behavior of the system when we consider a generic
sequence Sy of subsets chosen at random. A simple stan-
dard probabilistic argument however allows us to show
that such a convergence rate is indeed achieved by almost
every sequence Sy. More precisely, we can show that, for
any fized ¢ > 1 and for almost every sequence St,

IA@)2 < (

c
v+1

t
) [|A(0)||?  for t sufficiently large.

From an implementation point of view this strategy has
an evident drawback: at each time the same random
choice has to be done by all systems. A possible way to
overcome this limitation (if we exclude supervision) is by
imposing that each agent uses the same pseudorandom
number generator starting from the same seed.

5.2 Time-varying with Bounded In-degree

In this section we consider another time-varying strat-
egy where we do not limit the time-varying matrices
to be Cayley. In this new setting we assume that each
system receives the state of v systems chosen randomly
and independently. This can cause the appearance of
multiple arcs connecting the same pair of nodes. Fix

ko, k1,...,k, > 0 such that Zj k; =1 and
Ky= (ko= 1)1+ kEi(t)
i=1
where E;(t),i = 1,...,v, are v independent sequences of

independent random variables taking values on the set
of matrices £ consisting of all matrices with entries 0 or
1 with just one 1 in each row and uniformly distributed
in such a set. The closed loop becomes z(t+ 1) = Px(t)
where

Py = I+ Ki) = kol + ZV: kiEi(t) . (13)

i=1

The initial condition x(0) is a random variable indepen-
dent of the processes F;(t). Again, we want to study



the asymptotic behavior of x(t). Since the controllers we
are using are not necessarily average controllers, we can
not longer use the variable A(t) := z(t) — N~ 1117%(0).
However we can prove the following result.

Theorem 10 There exists a scalar random variable o*
such that

Ella(t) — " 1] < Cp'BI|(I - N~'117)z(0)[]*  (14)

where
N -1 1—2ko+ >0 | K?

_ 1.2 § 2 _ 0 i=1"

p—k0+ Tf £ k17 C (1—p1/2)2

PROOF. Let Q(t) := E[z(t)x(t)T]. Notice that
Q" = B[Pz’ P! = E[E[Pxz” PT|P]] = BE[P,QP]]

=koQ + Zkoki(QE[EiT] + E[E;]Q)
i=1
+ ) kikEEIQEE] ]+ Y kEEQE]]
i# i=1
Notice that E[E;] = N~'11T. Moreover, for any M €
RN* it holds

1 1
E[E;ME}] = Vi (MY + m11TM]1(1111T —1).

These relations imply that

QT =kQ+> koki(N"'117Q + QN~'117)
i=1

+) R (N (@I + NPT Q11" - 1)
i=1
+ Y kb NTITQN LT
i#]
Let us define w(t) = tr (Q(¢)) = El|z(t)||* and s(t) =
N-11TQ(t)1. Straightforward computations show that

[w“‘] Yokl 1= k7 lw
+ 1
s

1
Nz;’:l k7,2 1- Nz;’:l k7,2 s

] )

We now estimate E||z(t + 1) — z(¢)[|*:

Ellz(t+ 1) — 2(t)|]* =
= tr B(z(t+1) — () (x(t +1) — 2(t)T =

= tr Q(t + 1) + tr Q(¢t) — 2tr [(kol + (1 — ko)N117)Q] =

=w(t) > kI +st)(1— > k) +w(t) — 2kow(t)
=0 1=0

—2(1 = ko)s(t) = (1 — 2ko + Y _ k) (w(t) — s(t)).

=0

From equation (15) we can argue that

w(t) (1) = (ké TELL Zkf) (w(0) ~ 5(0))
and so

El|z(t+1)~a(t)||* = (1 —2ko+ ) k‘?) p'(w(0)—5(0))

i=0

(16)

Standard arguments on complete metrics show that x(t)
converges to a random vector z* in the L?-norm and

+oo
(Ellz(t) — 2*[[*)/* < > (Blla(s + 1) — 2(s)[]*)"/?
s=t
v 1/2 —+o00
= (1 —2k0—|—2ki2> (w(0) —8(0))1/2Zp5/2 =
=0 s=t
1 — 2k + Zz‘uzo '1%2 12 t/2
- (e o - sop)
Notice finally that, if ¥ := I — N~'117, then

E||Yz(t)||? = w(t) — s(t) and, since w(t) — s(t) tends to
zero, we can argue Yz* = 0 and this implies that there
exists a scalar r.v. a* such that z* = o*1. O

Notice that the p appearing in estimation (14) is the
exact exponential rate of convergence of El|z(t) —a*1||?
in the sense that

¥ 2
1 J0gEllz() — a1
t—-+oo t

=logp.

This is a straightforward consequence of relation (16).
Notice moreover that the strongest exponential rate of
convergence in (14) is given by

B N -1
P=Nw+n -1’
obtained by choosing
N-1 N
k= ——m7+— d ki=———7— (17
T Np+y-1 ™ Norn-1 17
i =1,...,v. Notice that this convergence rate is smaller

than 1/(v + 1), which is the rate obtained through the
time-varying strategy on Cayley graphs discussed be-
fore. However, for N — 400, the two strategies yield the
same rate. The most important difference between the
two random strategies presented here is that the time-
varying strategy on Cayley graphs yields convergence to
the average of the initial configuration, whereas the one
presented in this section does not reach the consensus at



the initial average. Therefore, it is interesting to study
how far from the initial average the systems reach con-
sensus. We have the following exact result:

Proposition 11 Let a* be the random variable defined
in Theorem 10. Then

E|a*_N—11Tx(O)‘2 _ Z?:l kleH (I — N_lll]lT) 1‘(0)”2
N2N(1—k§) + (1= N) 3 k7]

PROOF. Consider A(t) := x(t) — N~'1172(0). We
know from (5) that the dynamics of A(t) is described by
the equation AT = P,A where P; is given in (13). For
this reason, by denoting Q(t) := E[A(t)A(t)T], w(t) =
tr (Q(t)) = E[|A(t)||? and s(t) = 17Q(¢)1/N, exactly
the same computation done in the proof of the previ-
ous result show that equation (15) still holds true. The
transition matrix has eigenvalues \; = 1, and Ay =
k3 + 222 3" | k2. The second eigenvalue coincides with
the convergence rate p computed before. The time evo-
lution of w(t) and s(t) is thus given by

[w(t), s(t)] = c1Alar + cad\ban

where c1, ¢y are constants and a1, as are the eigenvectors
associated to A\; and Ay. Notice that a; = (1 1)T. At
steady state the vector (w(o0), s(c0))? is aligned to the
dominant eigenvector a; and thus w(co) = ¢;. Simple
calculations yield

E?:l k2 B| (I - N_1]1]IT) x(0)][?

w(oo) = NINL—-K)+ (1 —-N)Yr_ k2]’

This yields the result. O

If we use the control gains ko, k1, . - ., k, asin (17), which
yield the fastest convergence rate, then we have

o _ BJ[(I—N"11T) 2(0)|?
N2(N(1+v)—1)

Ela* — N71172(0)|

Notice that, if z;(0) are independent and E (z;(0)?) =
o? is the same for all 7, then,

E|[ (I - N~'117) 2(0)|]* = (N — 1)0°.
In this case the final formula becomes

N-1 )
N (NA+v) -1

Ela* — N7'172(0)]? =

which in particular shows that, as N — oo, the mean
square distance of the consensus to the initial average
tends to zero as N 2.

10

6 Logarithmic Quantizers

In this section we present another strategy that allows us
to overcome the poor performance achievable by time-
invariant Cayley communication networks. This can be
done by allowing data exchange over communication
links that transmit logarithmic quantized data. As well-
known in the literature, logarithmic quantizers provide
a very efficient way of transmitting control signals. More
precisely, assume we want to drive the state from a state
region I to a target region J and let C, called the con-
traction rate, be the ratio between the measure of [
and the measure of J. This parameter describes the re-
quired relative precision of the consensus. It is known
that [13,14], while exact communication links, modelled
by uniform quantizers, require channels able to trans-
mit over an alphabet with cardinality proportional to
C, logarithmic quantizers need instead an alphabet with
cardinality growing only logarithmically in C'. The sim-
plest way to model the effect of a logarithmic quantizer
is by introducing a multiplicative noise. In this section
we provide the instruments for analyzing the effect of
this kind of links in the consensus problem.

Let G be an Abelian group having N elements and a sub-
set S C G such that 0 € S. Consider the Cayley graph G
associated with G and S. This has to be interpreted as
the un-noisy communication graph with which we asso-
ciate a Cayley stochastic matrix Py compatible with G.
Such a matrix corresponds to the closed loop matrix ob-
tained using these perfect communication links. We now
consider the possibility that each system ¢ can transmit
functions of the exact information available at system
1 to some other systems. Such transmissions are loga-
rithmically quantized and this effect is approximated by
introducing a multiplicative noise. We impose that the
Cayley symmetry of the overall structure is maintained.
In order to achieve this, we define ¢ outputs

zs:=Hgx, s=1,...,q (18)
where H, are Cayley matrices still compatible with G.
The i-th components of the outputs 21, ..., z, represent
the information the i-th system transmits to the other
systems. In this way each system transmits ¢ scalar mes-
sages. We assume that each component of the output
zs; gets distorted by the multiplicative noise 1 + e, ;. To
complete the model we have to specify which systems
receive this information and how it is used. We assume
again Cayley structure at the level of controllers, namely
we assume there exist Cayley matrices P, such that the
closed loop dynamics can be described as

q
xt =Py + Z P,(I + E,\)H,x,

s=1

where E; = diag{es1,...,es.n} is a diagonal matrix of
noise random variables. All noises e, ; are assumed to
be independent, having zero mean and finite variance
2. Notice that the nonzero elements of the matrix P



specify what logarithmic link is active. More specifically,
(Ps)i; # 0 means that the signal (H,x); is transmitted
to the system ¢ after being logarithmically quantized.
It is reasonable to assume that consensus configurations
x = cxp are equilibrium points, namely 2T = 2 under
any possible multiplicative noise. This happens if and
only if )1 =1, and Hy1 =0 for s = 1,...,q. This is
quite natural: data affected by multiplicative noise main-
tain the consensus convergence only if they converge to
0. Hence they must consist in differences.

The asymptotic behavior of this dynamical system can
be studied in a similar way to the random case treated
in Subsection 5.2 by considering Q = E[zzT]. With the
position P = Py+ ) P,H,, the evolution law for ) can
be described as follows

q
Qt = proPT + Z PE (E,H,QH!E,) PT,

s=1

Observe that, if M is any square matrix, then

M;E(e?) ifi=j

E(E;MET);; = E(es; Myjes;) = :
( Jis = BlesiMijes;) {0 iz

This implies that

QT = PQPT + 25213 diag(H,QHI)PT,  (19)

s=1

(where diag{M} := diag{Mi1,..., My n}). Let Y :=
I — N='117 and define the signals y(t) := Yx(t) and
rp(t) = N~'1172(t). Let moreover

w(t) = Elly®)|] = tr Ely()y()"] = tr (Y Q)YT)
wy () = Efl|z()]]°] = tr (H.Q(t)H) (20)
s(t) = E[llzp(#)|*] = tr (N xox5Q(O)N ™ xox)

= N~ Q(t)xo
where the signals z;(t) are defined in (18). To study the

evolution of the above quantities, we need a technical
result on the trace operator for Cayley matrices.

Lemma 12 Let P be a Cayley matriz and D diagonal.
Then, tr (PDP*) = N~Y|P||*tr (D).

PROOF. Let mw be the generating vector of P. We know
that P can be written as in (6). From this we obtain

tr (PDP*) = IZ )(X*DX)tr (N~ 'xx") -

We have that

X*Dx =Y _X(9)"Dggx(g) = > _ Dgg =tr (D

geG geG

Substituting in the expression above, using the orthonor-
mality relations of characters, and the fact that || P||?> =
N> eq |7(g)|?, we obtain the thesis. O

Using the above lemma, we obtain from (19) that

q
wh = tr (YPQPTY") + N~ " 62|[Y Pu P,
s=1

S

q
tr (H, PQPTHT) + N~1> " 62||H, Py|[*w,

s=1

a
st :s+N_125§|)\5|2ws (21)

s=1

where )\ is defined by Psxo = Asxo (equivalently, Ay =
7p,(x0))- Define w(t) to be the g-dimensional vector
with ws(t) at position s and moreover the ¢ X g-matrix
L with

Lrs = N715§|‘HT’PS||2

We have the following result.

Lemma 13 IfL # 0, thenw(t) < (p*I+L)*w(0) where
the inequality is meant componentwise and where p =

p(P).

PROOF. Writing P as in (6), we then obtain

tr (H,PQPTHT) = Z 1000 1P tr (H-QHT xx*)
X#Xo
1 "
< Nmax{|0(x)|2 LX # Xo} Z tr (H,QH xx")
XF#Xo0

1
= p*tr <HTQHTTN ;XY‘) = p*tr (HTQHTT) = p*w,

Define now a sequence of ¢ dimensional vectors w(t) as
follows. Let w(0) = w(0) and let w™ = (p?I + L)w By
induction it can be proved that w(t) < w(t) for all ¢ and
this proves the inequality. O

Define now the vectors a,b € R?:

as = N"13||YP|*? by = N5 \)?

We can now state and prove a general convergence result.

Theorem 14 Let p := p(P) and let p* be the induced
2-norm of the matriz p?I + L. Assume that L # 0 and
that p?> < 1. Then, there exists a scalar random variable
a* such that

El|z(t) — o*1|> < Ap* 4+ B (22)



where
A= w(0) — [lal|(p* — p*)~H||w(0)]]
B = (llal|(7* = p*) =" + []bll(1 = p)~2)[[w (0)]]

and where w(0) and w(0) are defined in (20).

PROOF. Notice that, as showed in the proof of Lemma
13, we have tr (Y PQPTYT) < p?w. Define the sequence
w(t) as follows: w(0) = w(0) and w* = p?w + ||a|| ||W]|
where w(t) := (p?I + L)*w(0). By induction it can be
proved that w(t) < w(t) for all ¢. Using moreover the
fact that p? > p? (since L # 0), we can estimate

t—1
w(t) = p*'w(0) + |[a|| Y > |(p°T + L) w(0)]]
1=0
t—1
< p*'w(0) + [lal] Y p* 5% [w(0)]] =
=0
HalllTw (O 2, (lall WO
- (w0 - G i+ ()5

Notice now that

Elllep(t +1) = 25@)|]’] = Ellles(t + D)I’] + Ell|lzp(1)] )

—2trBlzp(t + Dzp(t)’].

On the other hand, since

q
IE =xp + Nil Z XOXSPSESHSI

we have that
trElzp(t + Dapt)!] = tr Elzp(t)zp(t)T]

+ Nt Ztr [xoXi PsE(E) HE(x(t)xp(t)T)] = s(t).

s=1
Using Lemma 13 we can then estimate as follows

Elllep(t+1) —2pt)[[*] = st +1) — s(t) = b" w(t)
< b7 (I + L)'w(0) < p*|[bl] [[w(0)]] - (23)

This shows that zp(t) converges in mean square sense
to a random variable a*1 and that

(Blles(t) — o 1|*)? <Y (Bllzp(s + 1) — zp(s)|])!/?

s=t
< b1/ ||W(O>H1/2ﬁt_

- (24

Estimation (22) now follows from the splitting

Ella(t) — 1] = Ellzp(t) — o 1|* + Blly()[*. O

Notice that, since p > p, then the rate of convergence is
determined by the parameter p, namely by the induced
2-norm of the matrix p?I + L.

As for the strategies illustrated in Chapter 5, it is also
here interesting to evaluate the mean square distance of
the consensus a* from the initial average N~117z(0).
We have the following result.

Proposition 15 Let a* be the random variable defined
in Theorem 14. Under the same hypotheses of Theo-
rem 14, we have that

« _ ar—1qT 2 o )

PROOF. Consider A(t) := z(t) — N~11172(0) and
Q(t) = E[AM)A(t)T]. Tt is immediate to check that
Q(t) satisfies the same evolution law (19). More-
over, we have that y(t) = Yz(t) = YA(t) and
zs(t) = Hsz(t) = HsA(t). If we define in this context
rp(t) = N~'1172(t) — N~'1172(0) we have that the
corresponding mean square values w(t), ws(t), s(t) have
exactly the same expression in terms of the matrix Q
and, as a consequence, they satisfy the same evolution
equations (21). In particular, we obtain that

t—1

Using Lemma 13 we can now estimate

s(0)] < T WOl

from which the thesis immediately follows. O

In the sequel we apply previous results to analyze a par-
ticular but significant example.

Example 16 We assume we have the same exact com-
munication graph of Example 3, namely, the Cayley graph
G(Zn,S), where S = {0,1}. We assume that Py is the
stochastic Cayley matriz generated by wp,(0) = 1 — k,
and wp,(1) = k, where k € [0,1]. Assume moreover
q = 1 (each system transmits just one scalar signal).
Precisely, define Hy to be the Cayley matriz generated
by 7, (0) = 1, and wg, (1) = —1. This means that each
system i transmits the difference between its own state x;
and the the state x;_1 which is known exactly by system
i. It remains to choose the matriz Py. Our objective is to
choose Py in such a way that P = Py+PrHy = N~ Yxoxg.
This can be done by letting wp, (9) = N~1(g+1— N) for
g=1,...,N =2 and k = Y=L Indeed, this definitions

N
yield Py Hy with the generator

7pm, (0) =0, 7p (1) =2N"" =1, 7pg,(9) = N~*



forallg=2,..., N —1. With such a choice we have that

PH, = PY = 0. Notice moreover that Pyxo = A1Xo
implies that
N-1 -2
o B g+1-N  (N-1)(N-2)
D SETIUIS pE = S
g=0 g=1
and so 1 (N —1)(N —2)
_ 20y 12 _ 52
b=yl =0
Moreover we have that
N-1
N—-1)(N-2
AP =N Y frm (o) = DN =2
g=0
which implies that
1o 2 o (N -1V -2)
L= <RI PP =l

Analogous computations show that

(N —1)(N —2)(N?2+3N —6)
12N2

VP |? =

which implies that
(N —1)(N —2)(N?+ 3N —6)
12N3

a=2¥6

For big N we have that L ~ 6%, a ~ 5%%
2

5. In this case, since we have that p(P) = 0, applying
Theorem 14, we obtain that

El|z(t) — o*1|]* < Bs}

N
B=|—
(12Jr

Instead, from Proposition 15 we obtain that

and b ~

(25)

where
2
o1

s ) Bl

1 8
—~N""1Tz(0))? <

Ela* < N2(17—16%)EHH$(0)||2 (26)

Notice that, for small 61, the convergence rate towards
the consensus established in (25) is much better than
what obtained without noisy data transmission. More pre-
cisely, suppose the our goal is to have convergence of the
initial states x;(0) € [-M, M] to a target configuration
x;(00) € [ — €, + €] where v is a constant depending
only on the initial condition x(0) and € describes the de-
sired consensus precision. This s a “practical stability”
requirement and it is the only goal achievable through
finite data rate transmission. In this case the contrac-
tion rate is C := M/e. We assume that the exact data
transmissions are substituted by transmissions of preci-
sion € uniformly quantized data. In this framework it is
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known [14] that each uniform quantizer needs C different
levels and so the transmission of its data needs an alpha-
bet of C' different symbols. On the other hand (see [14])
each logarithmic quantizer needs

(21og C) log[(1 + 61)(1 — 01)]

different symbols. Let 51 = 1/2. We know that the strat-
egy proposed in this example allows a convergence rate
p =~ 1/2. In this case we need N uniform quantizers and
N (N —2) logarithmic quantizers. Thus, the total number
of symbols Lot that needs to be transmitted during each
sampling period in order to obtain the consensus is

Liot = NC +2(log3) "' N(N — 2)log C.

Without logarithmic quantizers we need only Lot = NC
symbols but we obtain a convergence rate p ~ 1—2w? N2,
Observe that for large C the total number of symbols Ly,
in the two cases are slightly different, but we obtain a
manifest improvement in terms of rate of convergence.

Finally, notice that the mean square distance of the con-
sensus from the initial average (26) goes to 0 for 61 — 0.

7 Conclusions

We have derived bounds on the convergence rate to the
average consensus for a team of mobile agents exchang-
ing information over time-invariant and randomly time-
varying communication networks with symmetries. We
have showed that, in time-invariant networks, symme-
tries yield quite slow convergence to the consensus. In
particular for such networks we have computed a tight
bound for the convergence rate. We have also showed
that, if the communication network is randomly time-
varying over a class of networks with symmetries, the
achievable performance is much higher. The last part of
the paper has been devoted to study the control perfor-
mance when agents also exchange logarithmically quan-
tized data: adding such links in time-invariant networks
with symmetries improves the convergence rate with lit-
tle growth of the required bandwidth.
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