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Abstract

A consensus problem consists of finding a distributed control strategy that brings the state or output of a group of agents to
a common value, a consensus point. In this paper, we propose a negotiation algorithm that computes an optimal consensus
point for agents modeled as linear control systems subject to convex input constraints and linear state constraints. By primal
decomposition and incremental subgradient methods, it is shown that the algorithm can be implemented such that each agent
exchanges only a small amount of information per iteration with its neighbors.
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1 Introduction

The problem of cooperatively controlling systems com-
posed of a large number of autonomous agents has at-
tracted substantial attention in the control and robotics
communities. An interesting instantiation is the con-
sensus problem, see for example the recent survey pa-
per Olfati-Saber et al. (2007) and the references therein.
It consists of designing distributed control strategies
such that the state or output of a group of agents
asymptotically converges to a common value, a consen-
sus point. The agents are typically modeled by identical
first-order systems with no input constraints.

The main contribution of this paper is a decentralized
negotiation algorithm that computes the optimal con-
sensus point for a set of agents modeled as linear control
systems. In this paper, the consensus point is a vector
that specifies, for example, the position and velocity the
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agents shall converge to. Our approach allows us to in-
corporate constraints on the state and the input, which is
not easily done for the traditional consensus algorithm,
see the discussion in Marden et al. (2007). By primal de-
composition and incremental subgradient methods we
design a decentralized negotiation algorithm, in which
each agent performs individual planning of its trajec-
tory and exchanges only a small amount of information
per iteration with its neighbors. We show that the cost
of reaching the consensus point can be significantly re-
duced, by letting the agents negotiate to find an optimal
or near optimal consensus point, before applying a con-
trol signal.

There has been a lot of research activity in this area,
and a good starting point for related work is the recent
survey paper Olfati-Saber et al. (2007). In particular,
if the consensus point is a position and fixed a priori 1

(contrary to our approach, where the optimal consensus
point is a decision variable) we get a so called rendezvous
problem. For this type of problem, much work have been
focused on establishing convergence to the fixed con-
sensus point under different communication and visi-
bility conditions, see for example Cortéz et al. (2006)

1 In the consensus literature, the consensus point is typically
fixed in the sense that it is computed from the initial condi-
tions using a simple rule, for example, the consensus point
could be the average of the starting positions of the agents.
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and the references therein. Furthermore, optimal con-
trol formulations have been used in papers that focus
on the convergence of distributed model predictive con-
trol (MPC) based strategies to an a priori fixed equilib-
rium point. Dunbar and Murray (2006) propose a decen-
tralized scheme where a given desired equilibrium point
is asymptotically reached. The scheme requires coupled
subsystems to update and exchange the most recent opti-
mal control trajectories prior to each update step. Stabil-
ity is guaranteed if each subsystem does not deviate too
far from the previous open-loop trajectory. In Keviczky
et al. (2006), the authors propose a strategy where each
subsystem solves a finite time optimal control problem.
The solution of the problem requires each subsystem to
know the neighbors’ model, constraints, and state. The
strategy also requires the prior knowledge of an overall
system equilibrium. Finally, a related distributed opti-
mization problem, focused on formation flight, is con-
sidered in Raffard et al. (2004), where the decentralized
algorithm is based on dual relaxation. Their approach
differs from ours in that they do not consider the consen-
sus problem and that they use dual relaxation instead
of primal decomposition.

The outline of the paper is as follows. In Section 2, we
formulate the optimal consensus problem. The novel dis-
tributed negotiation algorithm is presented in Section 3.
Section 4 discusses some control strategies and shows a
numerical example. Finally, the paper is concluded in
Section 5.

2 Problem Formulation

Consider N > 1 agents whose dynamics are described by

xi(t + 1) = Aixi(t) + Biui(t)

zi(t) = Cixi(t) , i = 1, . . . , N , (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×pi , and Ci ∈ R
s×ni are ob-

servable and controllable. The vector xi(0) = x0
i ∈ R

ni

is the initial condition and zi(t) is the performance out-
put. We assume that the inputs are constrained accord-
ing to

(
u⊺

i (0), u⊺

i (1), . . . , u⊺

i (T )
)⊺

∈ Ui, i = 1, . . . , N, (2)

where T is a (fixed) time horizon and Ui is a convex set.
By using standard techniques from MPC, the constraint
can encode magnitude and rate constraints on ui(t), as
well as restrictions on linear combinations of the agent
states (Maciejowski, 2002, Sec 3.2).

Definition 1 Let θ lie in a compact and convex set Θ ⊂
R

s. The agents described by (1) reach consensus 2

2 By introducing a fixed offset, θ̄i, one for each agent, it is
possible to define a consensus formation relative to a global

at time T if

zi(T + k) = θ, for all k ≥ 0 and i = 1, . . . , N,

with ui(T + k) = ui(T ), for all k ≥ 0 and i = 1, . . . , N .

The objective is to find a consensus point θ ∈ Θ and a
sequence of inputs

(
u⊺

i (0), u⊺

i (1), . . . , u⊺

i (T )
)⊺

∈ Ui, with
i = 1, . . . , N , such that consensus is reached at time
T . The following cost function is associated to the i-th
system:

Vi(zi(t), ui(t − 1), θ) , (zi(t) − θ)
⊺

Qi (zi(t) − θ)

+ ui(t − 1)⊺Riui(t − 1), (3)

where Qi ∈ R
s×s and Ri ∈ R

pi×pi are positive definite
symmetric matrices that encode the cost of deviating
from the consensus point and the cost of control energy
for agent i. Let us introduce the following vectors:

xi ,
(
x⊺

i (1), x⊺

i (2), . . . , x⊺

i (T + 1)
)⊺

ui ,
(
u⊺

i (0), u⊺

i (1), . . . , u⊺

i (T )
)⊺

.

Since

xi =










Ai

A2
i

...

AT+1
i










︸ ︷︷ ︸

Ei

x0
i +










Bi 0 . . . 0

AiBi Bi . . . 0
...

...
. . .

...

AT
i Bi AT−1

i Bi . . . Bi










︸ ︷︷ ︸

Fi

ui ,

we have zi(T ) = Cixi(T ) = Hi(Eix
0
i + Fiui) = θ,

where Hi ,
(

0 . . . Ci 0
)
. We also introduce Ui ,

AT+1
i − AT

i and Wi ,
(

AT
i Bi AT−1

i Bi . . . Bi

)
−

(

AT−1
i Bi AT−2

i Bi . . . 0
)
. We now formulate the op-

timization problem,

minimize
u1,...,uN, θ

N∑

i=1

Vi(ui, θ) (4a)

s.t. Hi(Eix
0
i + Fiui) = θ, i = 1, . . . , N

(4b)

Uix
0
i + Wiui = 0, i = 1, . . . , N (4c)

ui ∈ Ui, i = 1, . . . , N (4d)

θ ∈ Θ, (4e)

consensus point θ. The condition of consensus formation is
that zi(T + k) = θ + θ̄i, for all k ≥ 0 and i = 1, . . . , N.
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with the cost function

Vi(ui, θ) ,

T+1∑

t=1

Vi(zi(t), ui(t − 1), θ)

= (Ci(Eix
0
i + Fiui) − 1T+1 ⊗ θ)⊺Qi(Ci(Eix

0
i

+ Fiui) − 1T+1 ⊗ θ) + u
⊺

i Riui,

where 3 Qi = IT+1 ⊗ Qi, Ri = IT+1 ⊗ Ri, and Ci =
IT+1 ⊗ Ci. Notice that the constraint (4b) guarantees
consensus at time T and (4c) guarantees that the con-
sensus point is an equilibrium, i.e., xi(T ) = Aixi(T ) +
Biui(T ). The constraint (4b) can potentially lead to in-
feasibility problems, but such problems can be mitigated
by replacing the constraint with a penalty term in the ob-
jective, penalizing deviations from the consensus point
at time T . Note, however, that due to assumption A2
infeasibility problems do not arise in our setup.

We make the following standing assumptions, which
make the optimization problem (4) convex and feasible,
and guarantee that the consensus point is an equilib-
rium.

A1: The matrices Qi ∈ R
s×s and Ri ∈ R

pi×pi , i =
1, . . . , N , are positive definite and symmetric. The set
Θ is convex and compact. The sets Ui, i = 1, . . . , N ,
are convex.

A2: For all θ ∈ Θ, xi ∈ {y ∈ R
ni |Ciy = θ}, and i =

1, . . . , N , there exists ui in the relative interior of Ui

such that zi(T ) = θ and xi = Aixi + Biui(T ).

The optimization problem (4) is interesting for a multi-
agent setting if the computations can be distributed
among the agents and the amount of information that
they need to exchange is limited. In the following we de-
velop a negotiation algorithm to find the optimal con-
sensus point, in which agents exchange only their cur-
rent estimates of θ.

3 Distributed Negotiation

To distribute the computation of the optimal consensus
point, we use primal decomposition in combination with
an incremental subgradient method (Bertsekas et al.,
2003). Let us start with defining qi(θ) as follows

qi(θ) = min
ui

Vi(ui) (5)

s.t. Hi(Eix
0
i + Fiui) = θ

Uix
0
i + Wiui = 0

ui ∈ Ui,

3 With 1T+1 we denote the column vector with T + 1 ones,
with IT+1 the T +1×T +1 identity matrix, and with ⊗ the
Kronecker matrix product.

where we have eliminated the dependence on θ in
Vi(ui, θ) using the constraint Hi(Eix

0
i + Fiui) = θ.

The optimization problem (4) can be written as

minimize
θ

N∑

i=1

qi(θ) (6)

s.t. θ ∈ Θ .

We then have the following result.

Proposition 2 The cost function qi(·) defined in (5) is a
convex function. A subgradient λi for qi(·) at θ is given by
the Lagrange multipliers corresponding to the constraint
Hi(Eix

0
i + Fiui) = θ.

PROOF. By Lagrangian relaxation we can define

Li(ui, θ, λi) = Vi(ui) − λ⊺

i (Hi(Eix
0
i + Fiui) − θ) ,

where λi are Lagrange multipliers. We also introduce the
dual function

di(λi, θ) = min
ui∈Ũi

{
Vi(ui) − λ⊺

i (Hi(Eix
0
i + Fiui) − θ)

}
,

where Ũi = {ui ∈ Ui|Uix
0
i + Wiui = 0}. Strong duality

follows from Theorem 6.4.4 (p. 373) in Bertsekas et al.
(2003), since

(1) the constraint Hi(Eix
0
i + Fiui) = θ is linear in ui,

(2) assumption A2 guarantees that there exists a solu-
tion in the relative interior of Ui to this equation,

(3) the function Vi(·) and the set Ui are convex.

Hence, qi(θ) = maxλi
di(λi, θ). Consider two feasible

points, θ† and θ‡, and let λ†
i be the Lagrange multipliers

corresponding to the relaxed constraint for θ†, then

qi(θ
‡) = max

λi

di(λi, θ
‡) ≥ di(λ

†
i , θ

†) + (λ†
i )

⊺(θ‡ − θ†)

= qi(θ
†) + (λ†

i )
⊺(θ‡ − θ†).

Hence, by the definition of a subgradient, λ†
i is a subgra-

dient of qi(·) at θ†. Now qi(θ
‡) can be expressed as

qi(θ
‡) = max

λi

{
di(λi, θ) + λ⊺

i (θ‡ − θ)
}

= max
λi

{
g(λi) + λ⊺

i θ‡
}

,

where g(λi) = di(λi, θ) − λ⊺

i θ and g(λi) + λ⊺

i θ‡ is affine
in θ‡. Since qi(θ

‡) is the pointwise maximum of a family
of convex functions, qi(θ

‡) is convex. 2
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The optimal consensus point can be computed in a dis-
tributed way using the incremental subgradient meth-
ods from optimization theory (Bertsekas et al., 2003). In
this scheme, an estimate of the optimal consensus point
is passed around between agents. Upon receiving an esti-
mate from its neighbor, an agent solves the optimization
problem (5) to evaluate its cost of reaching the suggested
consensus point and to compute an associated subgra-
dient (using Proposition 2). The agent then updates the
consensus estimate via

θk+1 := PΘ{θk − αhλi,k} (7)

and passes the estimate to the next agent. The algorithm
proceeds iteratively. Here PΘ{·} denotes the Euclidean
projection on the set Θ, αh is the stepsize, and λi,k is the
subgradient of qi(·) at θk. Pseudocode of the algorithm is
given in Algorithm 1. The difference between the incre-
mental subgradient method and the vanilla subgradient
method is that each agent only computes a subgradient
with respect to its own part of the objective function
and not the global objective function. The convergence
of the incremental subgradient algorithm is guaranteed
if the agents can be organized into a cycle graph, which
we formalize in the following assumption.

A3: The agents can be organized into a cycle graph.
Neighboring nodes in this graph can communicate
with each other.

The following proposition guarantees convergence.

Proposition 3 Under the assumptions A1-A3, Algo-
rithm 1 converges to an optimizer of problem (4).

PROOF. The proof follows from Theorem 8.2.6
(p. 480) and Theorem 8.2.13 (p. 496) in Bertsekas et al.
(2003), since the set Θ is convex and compact (so the
norms of all subgradients have an upper bound), and
the stepsize αh is square summable over h, but not
summable over h. 2

Algorithm 1 can easily be modified to a randomized ver-
sion (Bertsekas et al., 2003), which corresponds to that
the estimate is sent to a random agent at each update.
Regardless if the deterministic or the randomized ver-
sion of the algorithm is used, the convergence behavior
is asymptotic, which means that some stopping criteria
need to be used. The simplest and most practical criteria
is to negotiate for a fixed number of iterations. More ad-
vanced stopping criteria are of course possible, but these
are outside the scope of this paper.

4 Control Strategies and Numerical Examples

In this section we discuss control strategies and possible
extensions. The simplest way to devise a control strat-

Algorithm 1 Cyclic Incremental Algorithm

1: Initialize θ0 and α0. Set k := 0 and h := 1.
2: loop
3: αh := α0/h
4: for i = 1 to N do
5: Compute a subgradient, λi,k, for qi(θk)
6: θk+1 := PΘ{θk − αhλi,k}
7: k := k + 1
8: end for
9: h := h + 1

10: end loop

egy from the problem formulation is to first execute a
negotiation phase in which Algorithm 1 is run until a
sufficiently accurate optimal consensus point is agreed
upon and then, in a motion phase, apply the correspond-
ing open-loop control to reach it. If there are no distur-
bances the system will reach the consensus point at time
T . The main advantage of the proposed strategy is that
the optimal consensus point is computed in a distributed
way and only a small amount of information, the cur-
rent consensus point estimate, needs to be exchanged at
each step. To make the strategy robust to noise, the mo-
tion phase can be performed using closed-loop feedback
control with the optimal consensus point as a set point.
The controller could be devised using, for example, MPC
techniques.

We explore the performance of the distributed negoti-
ation. The setup is as follows: three agents with dou-
ble integrator dynamics and input constraints (|ui| ≤ 1)
should reach the same coordinates at time T = 40. The
convergence rate of the consensus point negotiation is
shown in Figure 1. The iterations can clearly be seen to
converge, and the convergence rate is high in the begin-
ning but slows down after a while. This behavior is typ-
ical for algorithms with diminishing stepsizes. For com-
parison, we solve problem (4) with θ fixed to the mean
of the initial positions of the three agents, θ̄. The opti-

mal cost is
∑N

i=1
qi(θ

⋆) = 6446 and the cost for meeting
at θ̄ is 6982. The corresponding optimal trajectories and
control signals for agent 2 are shown in Figure 2 and
Figure 3, respectively.

5 Discussion

Primal decomposition and incremental subgradient
methods provide an interesting framework to pose dis-
tributed consensus problems. It allows us to consider
general linear models for the agents and easily handle
convex input constraints and linear state constraints.
The convergence is mathematically guaranteed in the
simplest case when negotiation and motion phases are
separated. Future work includes the extension of the
results to strategies with interleaved negotiation and
motion phases and realistic models of the communica-
tion network.
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Fig. 1. The consensus point estimates for each agent. The
estimates are converging to θ⋆, an optimizer of problem (4).
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Fig. 2. The trajectories of three agents with double integrator
dynamics. The solid lines correspond to the optimal case, θ⋆,
and the dashed lines correspond to the mean case, θ̄. The
circles are the starting points, the squares are the ending
points, and the arrows show the initial velocities.
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D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex
Analysis and Optimization. Athena Scientific, 2003.
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