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Abstract

In this paper, the design methods and fundamental performance analysis of an adaptive peer-to-peer estimator are established
for networks exhibiting message losses. Based on a signal state model, estimates are locally computed at each node of the
network by adaptively filtering neighboring nodes’ estimates and measurements communicated over lossy channels. The
computation is based on a distributed optimization approach that guarantees the stability of the estimator while minimizing
the estimation error variance. The fundamental performance limitations of the estimator are established based on the variance
of the estimation error in relation to the message loss process. Numerical simulations validate the theoretical analysis and

illustrate the performance with respect to other estimators.

Key words: Distributed Estimation; Distributed Optimization; Wireless Sensor Networks.

1 Introduction

Monitoring physical variables is a typical task that
can be efficiently performed by wireless sensor net-
works (WSNs). Accurate estimation of these variables
is necessary in many applications, spanning from traffic
monitoring and control, industrial automation, envi-
ronment monitoring, to security systems [1]. However,
nodes of WSNs are typically characterized by both lim-
ited sensing, for which measurements are noisy, and
communication capabilities, for which message losses
may be not insignificant. Estimation algorithms must
be designed to cope with these adverse conditions, while
offering high accuracy of the estimates.

There are two main estimation strategies for WSNs. A
traditional approach consists in letting nodes sense the
environment and then report data to a central unit,
which extracts the desired physical variables and sends
the estimate to each local node. This approach has strong
limitations: large amount of communication resources
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(radio power, bandwidth, routing, etc.) have to be man-
aged for the transmission of information from nodes to
the central unit and vice versa. This mode of opera-
tion reduces the nodes’ lifetime as most of the energy
consumption is due to communication and message for-
warding to the central location. An alternative approach,
which we investigate in this paper, enables each node
to produce locally accurate estimates taking advantage,
through communication, of neighboring nodes’ local es-
timations and measurements. The challenge of such a
distributed estimation is that local processing must be
carefully characterized to avoid uncontrolled propaga-
tion of the estimation errors throughout the network
and, at the same time, to guarantee good estimation per-
formance.

The estimator presented in this paper is related to con-
tributions on low-pass filtering by diffusion mechanisms,
e.g., [1-8], where each node of the network obtains the
average of the initial samples collected by nodes. In [9,10]
the authors study a distributed average computation of
a time-varying signal, when the signal is affected by a
zero-mean noise. Distributed filtering using model-based
approaches is studied in various wireless network con-
texts, e.g., [11-15]. In particular, distributed Kalman fil-
ters and more recently a combination of the diffusion
mechanism with distributed Kalman filtering have been
proposed, e.g., [5,16,17]. In [18], a strategy where the
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estimator works at the same time as the communica-
tion update is studied. In [19], two iterative linear dis-
tributed estimators are proposed. The first one consid-
ers an incremental mode of cooperation, while the sec-
ond considers a diffusive iterative mode, but both modes
are based on the measurements only and no model of
the signal is assumed. In [20], a theoretical framework
for coupled distributed estimation and motion control of
mobile sensor networks for collaborative target tracking
is proposed. In [21] a distributed Ho, state estimation
for discrete time varying nonlinear systems is studied. In
this estimator, sensor nodes have knowledge of the fixed
network topology. In [22] the estimation performance is
studied on centralized Kalman filtering in fading wire-
less channels suffering message losses, where power con-
trol is considered to alleviate the fading. In [23], non-
Gaussian measurement noise is considered, where the
error entropy is minimized by the estimator.

In this paper, we propose a distributed approach to
estimate a time-varying multi-dimensional signal af-
fected by unknown additive disturbances. This is in
contrast to approaches where statistical models of dis-
turbances are assumed [13,24,25], or to approaches that
are focused on averaging initial samples [2,9,26-28], or
to methods where the estimation variables are static
parameters [12,18,29-31], or to those where only local
measurements are diffused over the network [32]. Com-
pared to [2,7,9,13,26,28], we do not use the consensus
algorithms in the estimator, and compared to [9], we do
not use the Laplacian matrix associated to the commu-
nication graph to design the estimator. Our estimation
parameters are computed through distributed algo-
rithms that adapt to the network topology and message
losses, in contrast to [12], which rely on centralized
fusion center, or to [9,10,33], where the computation
of estimator need the full knowledge of the communi-
cation graph. This paper is a natural extension of the
distributed estimators proposed in [34,35], which were
designed for scalar signals under the assumption of per-
fect communication, namely no message losses among
nodes. We extend and substantially generalize [34,35]
as follows: First, we consider multi-dimensional sys-
tem. Second, the estimator is designed to be robust
to message losses, leading to a new optimal estimator
structure. Third, new analytical results are provided
to demonstrate the performance achieved by the new
estimator in the presence of message losses.

The remainder of the paper is organized as follows. In
Section 2 we define the estimator structure and the mes-
sage loss model. In Section 3 we characterize the esti-
mator design method when message losses are present
and propose an estimation algorithm. In Section 4 we
establish bounds on the estimation error variance of the
proposed algorithm. In Section 5, we report the compu-
tational complexity of the proposed algorithm. Numer-
ical simulations are reported in Section 6 to illustrate
the performance of the proposed algorithm compared to

others in literatures. Conclusions are drawn in Section 7.
1.1 Notation

Let Bz and Covz denote the expectation and the co-
variance matrix of stochastic variable z, respectively,
whereas Ey [z(y)] and Covy[z(y)] denote the expecta-
tion and the covariance matrix taken with respect to the
probability density function of y, respectively. || - || is the
spectral norm of a matrix, or £2-norm of a vector, while
|| - || is Frobenius norm of a matrix. For matrix A, let
£ (A) and £y/(A) denote the minimum and maximum
eigenvalue (with respect to the absolute value of the real
part), respectively. tr A is the trace of A. Let o and ®
denote the Hadamard (element-wise) product and the
Kronecker product for matrices, respectively. Let T be
the Moore-Penrose pseudo-inverse for matrices [36]. For
matrix A, A > 0 (A < 0) is equivalent to A (—A) being
positive semidefinite. Let I and 1 be the identity matrix
and the vector (1,...,1)T, respectively, whose dimen-
sions may be indicated by a subscript. Let INg = INU{0}.

2 Problem Formulation

Suppose a multi-dimensional signal needs to be esti-
mated by a WSN. The signal is modeled by a linear sys-
tem with unknown additive disturbance

z(t+1) = Az(t) + w(t), (1)

for ¢ € INg, where 2(t) € R" is system state at time
t, and A € R™" represents its dynamics. w(t) € R"
models the disturbance in the state, whose ¢2- norm is
bounded by A for all the time [37,38]. Note that the un-
known disturbance is commonly addressed by H filter-
ing [21,39,37,38]. Suppose we place N sensor nodes at
static positions in the space. These nodes can commu-
nicate to their neighbors. At each time, node i takes a
noisy measurement of the system as

yi(t) = Ciz(t) + vi(t), (2)

where y;(t) € R™ is the measurement of z(t), and
C; € R™*" o;(t) € R™ has a Gaussian distribu-
tion with zero mean and diagonal covariance R;, and
Elv; (t)v]T(t)] = 0 for all t € Ny, ¢ # j. We assume that
node ¢ knows A and C;.

The communication network is modelled by a graph, in
which G(t) = (V, &), where V = {1,..., N} is the vertex
set and £ C V x V is the edge set. The set of neighbors
of node ¢ € V plus node i is denoted as N; = {j € V :
(i,7) € £} U {i}. Namely N is the set containing the
neighbors that a node i can have, including itself. Let N;
be the cardinality of set N;.

In each time interval, every node takes the measurement
of signal (1) before broadcasting its previous estimates



and measurements to its neighbors. After receiving mes-
sages from neighbors, each node computes the latest esti-
mate of the signal. However, the wireless communication
may be lossy because of bad channel conditions, caused
by radio interference and/or transmission conflicts (hid-
den nodes or exposed nodes). Let ¢;, for (4, j) € £ de-
note a binary random variable, modelling the message
loss on the edge (4,7) at time ¢ from node j to i. We
assume that ¢;, has the probability mass function:

Pr(pi,, = 1) = pij, Pr(pi;, =0) =1 —=pi; = qij, (3)

where p;; € (0,1) denotes the successful message re-
ception probability, and consequently ¢;; € (0,1) is the
message loss probability. The message loss process is as-
sumed to be independent among links, and independent
from past message losses. These assumptions are natu-
ral when the coherence time of the wireless channel is
small with respect to the typical communication rate of
messages over WSNs [40].

Remark 2.1 Notice that when A = 1, and the commu-
nication is perfect, namely no message losses, the sys-
tem model described by (1) is the particular case studied
in [35]. When A = a, with a € R and the communication
is perfect we recover the case studied in [34].

We also assume that every node 4 updates its estimate
Z;(t) of x(t) by taking a linear combination of its own
and of its neighbors estimates and measurements:

il(t): Z Lloij\t (Glg (t)Aih (t_1)+Hij (t)yij (t))7 (4)
i;EN;

with #;(0) = Ez(0), Gy, (t) € R™", and Hy,(t) €
R™™ for all 4, j. Let N, = {j € N : ¢i;s # 0},
namely such a set collects the nodes communicating to
node i at time t. The cardinality of the set is denoted
by Ny, , = 1. Fig. 1 illustrates an example of a network.

At node i, let %;(t) = (27 (¢),...,2F )T and y,(t) =

i1 iNi
(yi, (1), ..
surements of the neighbors, where we use 41, ...,in, to
denote the nodes that belongs to A;. Thus, (4) can be
rewritten in matrix form as

cyh (#)T collect the estimations and mea-

5(0) = Gy ARt - 1) +Hy v, (5)
where Gy, = Gy(t)o (o, @ 1,10), (6)
Gl(t) = (Gh (t)7 T 7GiNi (t)) ) (7)

Pijt = (‘piuw"' 7@iNl\t)T7 (8)

while Hy, , and H;(t) are constructed from the elements
H;, (t), similarly to Gy, , and Gi(t), respectively. More-

J
over, C; is a block diagonal matrix whose diagonal is

Links Links

Fig. 1. An example of network with indicated the nodes
and active links (solid line). In (a) the set N; = Ny, , is
shown for the case of no message losses (dashed curve). The
node i is the square one. For no message losses, N; coincides
with Ny, ,. In (b) some communication links are not active
because of message losses (dashed lines). Notice that the
set N, , (dash-dotted curve) and N; (dashed curve) do not
coincides anymore. The set A; remains the same (as it does
not depend on the message losses).

Ciy,...,Ciy,, while A; € RVixnNi ig g block diagonal
matrix whose diagonal blocks are As.

In this paper, we derive an estimator only based on local
information and computations. In this scenario, a cen-
tralized estimator, such as Kalman filtering, cannot be
applied, since it needs the global covariance matrices,
which can not be collected on time due to message losses.
Nevertheless, for performance comparisons with the dis-
tributed estimator presented in this paper, in Section 6
we suppose there exists such a Kalman filtering.

3 Distributed Minimum Variance Estimator

In this section we derive the design method for the esti-
mator (4) introduced in Section 2. We will show that the
optimal estimation coefficients that provide minimum
trace of covariance of estimation errors can be computed
by using semidefinite programming, while avoiding un-
controlled propagation of the estimation errors. In ad-
dition, we characterize these coeflicients, which will be
very useful for the performance analysis in Section 4. We
also show that sub-optimal estimation coefficients can
be computed in a closed form, which will be instrumen-
tal in Section 4.

Let e;(t) € R™ be the estimation error at time ¢ in node i.
Construct e;(t) = (el (t),...,el (t))” which is an nN;
vector collecting the estimation errors of the neighbors
of i. We define vy, = ¢, ® I, and impose

(Ge +Hy, Ci) g, =T, (9)

to remove the explicit dependence on the signal at the
times t — 1, ¢t — 2, and so on. This allows us to write the
dynamics of e;(t) as

¢i(t) =Gy, , (Aie;(t—1)+w;(t—1))~H,, vi(t), (10)



where
vi(t):(v;{(t),...,11,;7;V )T, wi(t)=vw(t).  (11)

Let e(t) = (ef(t),...,e%(#))T. The following theorem
provides a bound on the average estimation error.

Theorem 3.1 Consider the dynamics of e;(t) in (10)
following (9), and suppose ||w(t)|| < A for allt € Ny. If

G, Il < 'y/\/m with nonnegative scalar~y < 1/||Al|

for every message loss realization Pi|¢, then there exists

0 < v < v such that the estimation error of (4) is
bounded as

. ~'vV N
| EJE, < — AL 12

Before proving Theorem 3.1, we need the following tech-
nical results.

Lemma 3.1 Consider matrices U = [Uy,Us] and V =
[V1,0], in which nonzero matrices Uy € R"*P, Uy €
R™ 9, V4 € R™*P, and zero matriz 0 € R™*9, where
n < min(p, q). Then,

[U+VI[| <[[Ull+[V].

Proof:

U+ V|2 =ty (U + V1) (UL + V)T + URU3)
=l (U U] + UsUy + iV + ViU + U V)
<I[OI* + [VI[* + 260 (U V1)
<IOI2 + V2 + 2oV (13)

where the last inequality is due to that for a matrix, the
largest singular value is larger or equal to the largest
eigenvalue. Moreover,

IV || NUL VAL = 0 (ULUT) | V2|
<y (U U] + UU) |Vl = [U[[| V. (14)

Then, by inserting (14) into (13), we have
[U+V2 < [[OIP+[VI*+2[ UV = (U] +[V])?,
which completes the proof. 0

We are now ready to prove Theorem 3.1.

Proof: Let Vi(t) = |EyEve;(t)] and V(t) =
|E Eve(t)||. After some algebraic manipulations on

(10), we have

Vz(t) SHI&PG‘PW \/ N‘Pz\t HA ‘j%}i{\t Vj(t - 1)
+ HE‘PG‘Pi\t \ N‘Put A. (15)

Now note that

E‘PG<P1:“, N‘Pm = Z (G‘Pw, \/ Nsam) Pr(‘loﬂt)v (16)

Pi|t

which follows from that different realizations of ¢;, are
mutually exclusive. The expectation is given by the sum
of a finite number of combinations of possible message
loss realizations, so that it follows

HE‘PG‘PW\/m = H Z (G¢i|tM) Pr(‘Pﬂt)H
Pilt
<ZHG‘PW

N‘Pi\tPr(wilt) S Z Y Pr(‘Pﬂt) =7 (17)
Pilt Pilt

where the strict inequality follows from Lemma 3.1 and
that the submatrix in G({,“t corresponding to the mes-

sage losses will be zero. Therefore, (17) is a strict in-
equality, and from (15), for all : € N, we have

Vi(t) <7l Al max Vi(t—1)+7A, (18)
JEN,

Pi|t
Thus, there exists 0 < 4" < « such that at any time ¢

<~ i(t— ‘A
ma Vi(t) < | A max Vit = 1) +9/A. - (19)

By recursively applying (19),

1—"||All*
. < < 1t A t . L T A
Vilt) <maacVie(t) <7 | Al max Vi (0) 4o e A

whereby, since 7/ < v < 1/||4]|, we have

’)/ ,y/\/ﬁ
<— A=V < ———A 20
At = v (20)

n = Tyl

which completes the proof. O

Based on Theorem 3.1, we could obtain the desired aver-
age estimation error by properly choosing v. We remark
that if C;vy,, is full column rank, then HG%H || is only
bounded by the assumption in Theorem 3.1. However,
if Civy,, is not full column rank, due to (9), HGq,”t || is
bounded by the following lemma:

Lemma 3.2 Suppose (9) hold. If C;v,, is not full col-
umn rank, then |Gy, || =1/, /Ny

it "



Proof: From (9), we have

G‘Pm”‘Pm =I, - H‘PmCiV‘Pm

Moreover, matrix H%\ tCiu%‘ , is not full rank, since
Civy,, is not full column rank. By Rank-nullity Theo-
rem, Hy,  Civ,,  must have at least one eigenvalue at
zero. Thus, I,, — HLPWCW%_” have at least one eigen-
value at one, so does thm’/%\t' Therefore, we have

1< Gy ve,, [l < Gy llve, ) = 1Ge,, [ly/Ne,,

which completes the proof. O

We remark that due to the unknown disturbance w(t),
rank(C;) = n is a necessary condition for linear ob-
servers following [41,42]. In [43], this condition is relaxed
however, by identifying the various matrices, the relaxed
condition results in rank(C;) > n, which can be real-
ized only for rank(C;) = n in our setting. Thus, if C; is
full rank, observability is guaranteed and, moreover, we
have that Civy, , is full column rank independently of
the message loss process. Furthermore, considering The-
orem 3.1 and Lemma 3.2, if ||A|| < 1, clearly, the condi-
tion on C; full rank can be relaxed.

We can now compute the estimation weights G, , and
He,, under the stability constraint imposed by the con-
dition on G%“ of Theorem 3.1. At each time step, every

node i € N computes its estimation weights by solving
the following optimization problem that minimizes the
trace of the covariance matrix Covy, e;(¥) :

mln tr (Covy e;(t)) (21a)

\w Pilt

st. (G, + He, Ci) vy, =T, (21b)

’Y/ <P1\t ’ (21C)

Gy,

HGCPi\t

where objective function is

Covye,(t) = By [(ei(t) —Eye (1)) (ei(t) —Eye (1)) 7]
G%MP Gq9 “—i—H%“Q‘pmH%t, (22)

and matrix P%‘t and Q‘Pi\t are defined as

P, = (A:Covves(t—1)AT) o (pipepiyy ® 1n1y) (23)
Qq,, =Ev[vi(t)v{ (t)] o (@il @ 1n1y,) - (24)

We remark that in optimization problem (21), if Civ, ,
is full column rank, we can choose any v < 1/|| 4| ac-
cording to the requirement of the estimation error bound
given in Theorem 3.1. Otherwise, if Cil/%‘t is not full

column rank (when |4 < 1), welet 1 < v < 1/]|A]|
to bound the estimation error given in Theorem 3.1.
Note that constraint (21b) ensures (9), whereas con-
straint (21c), together with (21b), ensures that the ex-
pectation of the estimation error is bounded [compare
with Theorem 3.1]. We remark that both P, and Qq, ,
are computed locally at node ¢. The calculation of P‘Pm
is described in Appendix A, which is only an estimation.
Problem (21) can be efficiently solved at every node i by
semidefinite programming [44]. Note that the character-
ization of the solution is very useful when analyzing the
estimate properties as we will show in Section 4. The
following proposition formally characterize the solution.

Proposition 3.1 There exists positive semidefinite ma-
triz M;, such that the optimal solutions of optimization

problem (21), G;m and H‘*Pm, can be written as
* T
G‘Pz\t 7SL \tVQ” ‘t(P‘P“t +MI)T 5 (25&)
* o _gf T Tt
Htpz\t S‘Pi\f”‘P7‘tCi Q il (25b)

where

Sﬂai“ = ng‘t((Pﬂa”t+M’L)T+Csz4sz‘tCl)y4P1‘t N (26)

Moreover, if M; # 0, then HG’;W H =7/, /Neg,,-

Proof: Note that problem (21) is feasible, since there
always exist feasible solutions. When Cil/%“ is full col-
umn rank, consider solutions G, , = 0 and Hy, ==
(Cil/g,m)lf7 which are feasible to problem (21). Other-
wise if Gy, . Is not full column rank, let Hy, =
(CiV<P-b\t) and GCP It ( H‘P \tC V‘P \t)/ Pilt ®‘Pz\t
Then, H%Cz'/q»q isa d1agonal matrix whose diagonal

=1/,/Ng...

are feasible to problem (21).

Pilt

entries are either 0 or 1. Therefore, HG

Solutions thm and H%‘t

Thus, we’ve proved problem (21) is feasible. Further-
more, to avoid notation complications, in the rest of the
proof, we use characters without subscripts for notation,
for example, we use G and H instead of G%‘ , and H%‘ .

respectively.

Since problem (21) is convex and feasible, Slater’s con-
dition holds and optimal solution G* and H* exists.
Therefore we can use Lagrangian duality to character-
ize the optimal solution. We start by transforming con-
straints (21b) and (21c¢) into more tractable constraints:
Firstly, constraint (21b) can be equivalently transformed
into constraint:
(G+HC)vup =ug, k=1,2,...,n, (27)
where uy € R™ is a vector which has 1 in k-th entry and 0
otherwise. Furthermore, let arbitrarily choose unit vec-



tors (namely, vector having norm 1) z; for I =1,..., L,
with L > 1 arbitrarily chosen, and consider new con-
straint (which is a relaxed constraint (21c))

27GGT 2 <42/N, l=1,...,L. (28)

it ?

Clearly, by increasing L to infinity, constraint (28) is
equivalent to constraint (21c).

It follows that the Karush-Kuhn-Tucker (KKT) condi-
tions are necessary and sufficient for optimality. Con-
sider the Lagrangian multipliers g = [u1, ...,y for
(27) and ¢ = [¢1, - .., Cx] for (28), then we have

E(G7 H7 u7 C)
= tr (GPG"+HQH")+) uf (G + HC)vug—uy)
k=1

L
+ ZQ (tr (GGTM;) —~%/N. m) ) (29)

=1

where M; = zlle, and tr (GGTMZ) = leGGTzl. Thus,
KKT conditions are
(G+HC)vu, =u, k=1,...,n (30)
r (GG"M;) —4*/Ny,, <0, 1=1,...,L (31)

G (1 (GGTM) — /N ‘) =0,6>0,V (32)

n

2G(P+ M) + > pufv” =0 (33)
k=1
n
2HQ + > mujr’CT =0, (34)
k=1

where M; = ZZL ¢ M;. The last two KKT conditions
follow from

Vel(G,H, 1, () =0, VgL(G,H,pu, ¢)=0. (35)

KKT conditions (33) and (34) imply that

1 n
G=—3> mufv"(P+M)T,  (36a)
1 n
) Z prufvTCTQr . (36Db)
=1

By inserting (36) into (27), we have

1 n
—§Zuku£8uq:uq, g=1,...,n, (37)
k=1

where S is Sy, defined by (26). Since uy, TSug = [S)kq,
from (37) we have the following equations

p1[Sli1 + p2[Slo1+ - + pn[Sln1 = —2uy, (38)

Nl[s]ln + o [S]2n+ Rl 1% [S]nn = _2un s (39)

which can be written in a compact form uS = —2I,,.
This gives p = —2ST. Note that after simple manipula-
tions, we have ZZ:1 ,uku{ = p, which implies that

=28, (40)

n

T T T
g HrUp v = pv
k=1

By inserting (40) into (36), we have (25) by simple alge-
bra. Moreover, since all f > 0 and M; = zlle are pos-
itive semidefinite positive, M; is also positive semidef-
inite. Finally, as indicated by the KKT condition (32),
either {; = 0 or (28) holds at equality, which is equiva-

lent to HG || . It completes the proof. [

It is worth seeking computable bounds on the optimal
value of problem (21). This allows us to efficiently char-
acterize the performance gains of the estimator obtained
by the semidefinite programming. Hence, let us consider
a tightened version of problem (21), which allows us to
derive an upper-bound on the optimal value. In partic-
ular, instead of the (21c), we consider the following con-
straint:

(G%H(}q, H) < Ve N, - (41)

Note that the optimal value of the tightened problem can
be computed in closed-form. This result is established in
the following proposition:

Proposition 3.2 Consider optimization problem

mln tr (Covy €;(t)) (42a)

it ‘Pq\t
s.t. (G‘P ilt + H z\fC )V‘Pi\t = In (42b)
tr (GLPMGT ) < V2ax/N. e (42¢)

Pilt

G

Then, the optimal solutions are

* o T «
G‘Pi\f SjP It ¢,i|f(P<Pi\t AT (43a)
Hwi\t SL \tutpmci QT it (43b)

where Stpm = ng((Papm+/\zI)T+CiTQLmCi)V¢m’

and X} is either 0, or the solution to the constraint (42c)



at equality. Moreover, A} is located within the interval

\/ﬁNLPi t
0, B L1 tr 19;1_” - gm(PLPm) ’ (44)
in which 9y, = I/giltciTQLWCi’/%n'

We need two intermediate result to prove this proposi-
tion.

Lemma 3.3 [/5] Let B, D € RY*! be positive semidefi-
nite matrices with finite trace norm. Then

tr (BD) <trBtrD. (45)

Lemma 3.4 Let B € R be positive semidefinite ma-
trices with finite and nonzero trace norm, and let Z €
R>™ . Then

1BZ|% < 64(B)IZII% = 6*(BYI1Z]1% (46)

Proof: Let Z = (z1,...,2m), we have

IBZI% = I1Bz)1* < Y IBIPlzl* = 1BI*11Z]1%

k=1 k=1
=GB 217 = 62BN 2|17, (47)
which completes the proof. O

Now we are in the position to prove Proposition 3.2.

Proof: By following similar steps as those used in
the proof of Proposition 3.1, we can find Gf;”t and Hf;m
as (43), where A is the optimal solution of the La-
grangian multiplier corresponding to constraint (42c).
Indicated by the KKT conditions, either A} = 0, or con-
straint (42¢) holds at equality. In the rest of the proof, we
use the same notations used in proof of Proposition 3.1
for notational convenience.

Now consider G* from (43), we have

tr (G*G*) = tr (S0 (P + A1) "%w)

<tr (gTz)tr (20 P ) (48a)
=tr (S7)[|(P + X D) |2 < 20T (P + A D) |
<tr?9T 6,2 (P+NT)n Ny, (48b)

where inequality (48a) comes from Lemma 3.3, and in-
equality (48b) comes from Lemma 3.4 together with fact
that [[ve, | = n Ny, By enforcing

it "

nNg, tr 207 2 (P+XT) < 4°/N,, (49)

|t?

Algorithm 1 Estimation for node %

1. Py, = Po, #(0) = Ex(0)

2. while true do
Broadcast (Z;(t — 1),y:(¢)) to neighbors
Receive (2;(t — 1),y;(t)) from node j € N;
Identify node j for C; and R;

3

4

5

6. Find Py, |, as in Appendix A.

7. Find G;iw H;m by solving problem (21)
8 Zi(t) = Gf:,i‘tA:%i(t -1+ H;”tyi(t)

9. Sense the system, produce y; (¢t + 1).

10. end while

trot — ¢, P, (50)

nN,
we obtain AF > @
v

which indicates that for all these values of A}, con-
straint (42c) holds at inequality. This implies that A*
must be in the interval given by (44), which completes
the proof.

Proposition 3.1 gives an interval within which simple
search algorithms, such as a bisection algorithm, can be
used to find Af numerically. Note that the solution (43)
is not the same as solution (25), since constraint (42c)
and (21c) are not equivalent. However, if constraint (42c)
holds then (21c) holds as well.

The whole process of the estimation is summarized in Al-
gorithm 1. When node 7 makes the measurements y; (%)
at time ¢, it broadcasts them together with the previous
estimates Z;(t — 1). Meanwhile, node 7 receives others’
estimates and measurements. Node 7 estimates the esti-
mation error €;(¢) and error covariance matrix Py, asin
Appendix A. Then by using semidefinite programming,
node 4 can find the optimal weights G:’m and H:’m to

find the estimates Z;(t) at time ¢. The nodes repeats this
process along time.

We now turn our attention to the analysis of the funda-
mental performance limitations of our estimator.

4 Performance Analysis

In this section we characterize the performance of our
estimator. We highlight the dependence of the estima-
tor’s performance on the message losses. We investigate
the variance of the estimation error.

Recall that we use Covye;(t) denote the covariance ma-
trix with respect to the distribution of the noise v. Now,
we have the following corollary:

Corollary 4.1 Consider the optimal solutions G(*P”t
and H:’z‘u of problem (21). Then the covariance matriz



of estimation error satisfies

:
Covvei(t)g( Vi CTQ}, Cw “) , (51)

Proof: Note that in the following proof, we remove
the subscripts for notational convenience. By inserting
(25) into (22), we have

Covye;(t)

= SWT((P+M,)P(P+M,;)" + CTQIC)rST

< s ((P+M; )wcTQT ) vST
= sfsst= (7 (P+M)! +C7QfC)v)’
< @rcrqicy)’, (52)

The first inequality come from the fact that both matri-
ces P and M; are positive semidefinite. It completes the
proof. 0

Note that the previous result provides a rather conser-
vative bound, since we do not use any knowledge about
the covariance matrix Pwm' Proposition 3.2 helps us to
improve the bound in the following corollary. Recall that
we’ve defined 19%” = I/g ‘tCZTQLmCiV%u in Proposi-
tion 3.2.

Corollary 4.2 Consider the optimal solutions Gf;,i“
and H:,W of problem (21). Then, the covariance matriz

of estimation error satisfies

t
Covyei(t) < (wm +19g,m) : (53)
vl u
Pije Pilt
where .
'd’LPth ||AH Z T Jrf %‘tt 191
JGN Pit

Proof: Since problem (42) is the tightened version of
problem (21), thus we can prove this corollary by show-
ing that the resulting covariance matrix of problem (42)
satisfies (53). Thus, we consider the optimal solutions
G;m and HS of problem (42) instead of (21).

By following similar steps as those used in the proof of
Corollary 4.1, we obtain that

Covye,(t)

< (ugm (( e PADI+CTQL, © )m,,m)f. (54)

Now note that
trPy,, , =tr (A-Covvei(t—l)AT)o(<pi|tgoz‘; ®1 13;)
Ztr ACovyej(t—1 AT Ztr (AﬁL " 1AT)
JEN; JEN;
< S @l =S JAFwdl , (55)
JEN; JEN;

where the first inequality comes from Corollary 4.1,
whereas the second inequality comes from Lemma 3.4.
Since P%‘ , is positive semidefinte, then its maximum

eigenvalue is smaller than its trace. Thus, we have
€M (P‘Fuf, + )\jI) Str P‘Pw, + )‘j

ﬁN‘PH
< > ||A\|Fm9¢ " 1+7‘tm;m, (56)
JEN, v, v

|t

where the second inequality comes from (44) in Propo-
sition 3.2. Now we can conclude that

T *
V‘Pilt (P‘Pilt + A I)Tu‘p \t

ZGJl(P%“ )‘*I) <P\tV‘PIIf

T
v, ”
Al %TH - f oot )
HAHF ZjENq,m trﬁ‘Pq\t—1 + tr "‘9‘P It
which together with (54) completes the proof. O

The previous corollary guarantees that the estimation
error at time ¢ and in any node i, is always upper bounded
by a term that depends on the message loss process Pijt-
By using the corollary, we can compute the worst case
performance with respect to the message loss process.
With this goal in mind, we need two intermediate tech-
nical results. Now suppose there exists ¢ > 0 such that

CTR7'Cy > 071 (58)
for any node ¢, thus we have the following lemma:

Lemma 4.1 Consider the optimal solutions G:;,“t and
H, . of problem (21). Then, for any message loss real-
ization @),

P ) <o (AP ) )

Proof: From (58), we have

4
S S Tot .
19LPi|g - (ytpmc’i Q‘Puzclyﬁout) < N



which implies that the j-th n by n diagonal block of
P, are less than [[A[*0/Ny, 1. Assume that each
diagonal element of a covariance matrix is the largest
value along its row. Hence, it follows that

no

Py, < AP > < ||A|*noN;, (61)

jEN‘P“f, Pjlt—1

since Ny, > 1. Together with (44), we have

0Py, ,+ATT) < noNy||A|*+

nNy.
\vatrﬁlilt . (62)

The proof is completed by inserting (60) into (62). O

Lemma 4.2 For any message loss realization @),

(k)
Eelefien] ™ = 2 11 (63)
k=0

where

SR Ni-1
X(k): Z ( Qis(n) H pis(m)): (64)

=1 m=k+1

and the function s : {1,2,...,N; =1} —» {1,2,...,N; —
1} is a permutation. Namely the k-th coefficient of the
polynomial (63) is the sum of (Nik_l) terms in which there

are k factors q;; and N; — 1 — k factors p;,. with j # r.
. N;
Proof: Random variable ga;fr‘tcpﬂt = 1+Zj=1,j¢i i,
is given by the sum of N; — 1 independent Bernoulli

random variables having different parameter. Then, we
have [46]

Hm%#m*=ém@m, (65)

where ¢1(z) is defined as

N; N;
m@):E#ﬁ%WJ:IIEfWH:IImﬁ+mﬂ)
i=1 =1
i j#i
=xo+tx1z+ -+ xn_12V ! (66)

where the last equality is achieved by developing the
product of terms ¢;; + p;;2 in a polynomial in the gen-
eral form. After tedious manipulations, we see that the
coefficients of the polynomial are given by (64). By using
g1(2) in the integral (65), we obtain the result. O

We are now ready to give the following important result.

Proposition 4.1 Consider the optimal solutions GZ,W
and H:‘Pm of problem (21). Then for any message loss
realization ¢,

E,Covye;(t)

nol x (k)
< E .
- 9 NG -1 kE+1 (67)
(HAl2N; + ) 4 s

Proof: We use the previous two lemmas to prove
this proposition. By considering (54) together with (58),
we have
E, Covye;(t)
* — T
< ]E‘P (Vg (P<Pm +)‘z I)TV‘Puz +o 1”51-“1/991”) N (68)

ilt

Moreover, from Lemma 4.1, we have

T * —1 * T
V(pz‘t(P‘Pi\t +>‘i I)Tu%;u 2 E]W (P‘Fm +)‘i I) Vap“tVLPm

ngykmu,
. i (69)
no (||A|2N; + 7)
Thus, we have
Eo[p], i) 'nol
By Covvey(t) < —- 10— (70)
(IAI2N+2) " +n

The proposition follows by invoking Lemma 4.2. O

Observe that the estimation error variance given by
Proposition 4.1 depends on the message loss probabili-
ties ¢;5, on the maximum number of neighbors for each
node NV;, on the dimension of the state n, and on the
largest singular value of the matrix A. Note that in (67),

the first factor ——— 2L g always smaller that
(lAIPNA+2E) " 4n

oI, whereas the second factor clearly depends on the
value attained by the various g;;. We consider here the
simple case when g;; = ¢ for all 7, j, which gives

Xk 1—gM
Z1f+1:(1—q)N,-' (1)

In Fig. 2, we have plotted such a function for various
values of ¢ and N;. The function decreases very quickly
as the maximum number of neighbors of a node in-
creases, for all values of ¢ (notice that we have consid-
ered that ¢ = 0.3 at most, namely a message loss proba-
bility of 30%). This is rather intuitive, since as the num-
ber of neighbors increases message losses have less im-
pact on the estimation and thus better performance are
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Fig. 2. Second factor of (67) as function of ¢ for increasing
values of N; ranging from 2 to 100. The factor is always
less than 0.8. The smallest values are achieved when ¢ is
small and N; is large. This is explained by that the message
loss probability has a decreasing negative effect when the
number of neighbors of a node increases, which translates
into a smaller value of the second factor of (67).

achieved. In particular, even when the first factor in (67)
is very close to 1, and the number of neighbors is greater
than 2, we have that the product of the two coefficients
does not exceed 0.65 with a message loss of ¢ = 0.3. It is
only a 30% higher than the case when no message losses
are present.

5 Computational Complexity Analysis

In this section, we characterize the computational com-
plexity of the estimator we have proposed. Besides ma-
trix/vector multiplication to update the current esti-
mate, the computational complexity is mainly given by
two components: the semidefinite programming and the
estimation of matrix Py,
Generally, the estimator requires matrix multiplications
of size nNy,  at each node ¢ at time ¢. Thus the complex-

ity is O(n3Ng_‘t) using Gauss-Jordan elimination [47].
To simplify the analysis, we use this most classical al-

gorithm to do the multiplication and the complexity re-
sults in O(n3N$’,_H) for the matrices multiplication.

A worst case complexity result to solve the semidefinite
programming problem (21) is the following [48]: Let ¢ be
the number of constraints. Then, the worst-case number
of interior-point algorithm iterations to compute an e-
solution of problem (21), meaning its objective value is
at most e above the minimal one, where positive € < 1,

is bounded by O(y/n + clog1/¢).

The computation for the matrix P%‘t , which is described
in Appendix A, consists of those for quadratically con-
strained least-square problem and for matrix multipli-
cation. The quadratically constrained least-square prob-
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lem is used to find a value of p; by the Generalized Cross
Validation as in [35]. Note that when the static topol-
ogy is initialized, we can use a N;-by-N; look-up table to
speed-up the computation of a quadratically constrained
least-square problem (see [49]). Then, the computation is
generally O(N; log N;) to create the table and O(log NV;)
to pop the value.

Combining these three components, the total computa-
tional complexity can be found as

(’)(ng’NE’ (mlog % + log Nl)) , (72)

where ¢ = 2. Note that in general log /N; is much smaller
than v/n + clog 1/e. In following section, we will present
the numerical performance of the proposed estimator.

6 Numerical Experiments

In this section, the numerical results and communication
cost of the proposed estimator are illustrated. Numerical
simulations have been carried out to compare the estima-
tor proposed in this paper with some related estimators
available from the literature. We take the mean square
error of the estimates of each node as performance mea-
sure. The mean square error (MSE) has been averaged
over all nodes of the network. We consider the following
estimators for comparison purposes. Note that for all the
estimators the communication channels in simulations
suffer from the messages losses.

Ep: Let H;(t) be the solution of the linear least square
problem at node i, which is equivalent to following
optimization problem

. T
min tr{Hy,,Qqp, . Hy ,

s.t. Hap”tci’/i =1.

(73a)
(73b)

This is a measurement diffusion method that is close
to the strategy in literatures as [31].

Eaxr: Let Gy;(t) = I/N%H, if node ¢ and j communi-
cate, and G;;(t) = 0 otherwise, while each node runs
local Kalman filter based on its measurements only.
The updated estimate is the average of the old esti-
mates, which is close to the averaging strategy used
in [1].

FEpkr: Distributed Kalman filter, which was intro-
duced in [20].

FEckr: Centralized Kalman filter, which gathers all the
measurements and obtain the estimates by Kalman
filter. Recall that the centralized Kalman filter always
performs better in MSE than the distributed Kalman
filter when w(t) is zero mean Gaussian noise.

Ey_: Hy filter, which gathers all the measurements,
and could performs better in MSE than the centralized
Kalman filter when w(¢) is biased [39].
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Fig. 3. Illustrations of the nonlinear disturbance from time
0 to 1000 with zero mean.

FEp: The estimator proposed in this paper.

The system used in simulation is defined as

0.9 0.1
A= , (74)
0.2 0.6

while C; is generated randomly as a 2-by-2 or 1-by-2
matrices with probability 0.5, 0.5 respectively. Further-
more, we consider three types of disturbance: the nonlin-
ear disturbance as illustrated in Fig. 3, the zeros mean
Gaussian noise, and the non-zero mean Gaussian noise.
In the simulation, we let message loss rate g;; = ¢ for all
i and j, and vary from 0 to 0.3.

Fig. 4 shows the MSE for all the estimators as a function
of the message loss probability. Recall also that in all
the simulations related to the proposed estimator Ep,
the error covariance matrix is estimated locally at each
node as described in Appendix A. As shown in Fig. 4,
Ep outperforms all other estimators for any considered
message loss probability in both nonlinear disturbance
and non-zero mean Gaussian noise. Fig. 5 illustrates the
first component of the signal, the estimates, and the
corresponding square of error for Epxr, Eckr, Em.,
and Ep with nonlinear disturbance and Gaussian noise,
where the estimates come from an arbitrary node in the
WSN. Note that for all estimators, the statistical param-
eters of additive disturbance are unknown, meaning that
their knowledge is not assumed to derive the estimators.
However, in the simulations, the true variances of the
additive noises are used in Faxpr, Epxr and Fokr.

Finally, the average computational time is approxi-
mately 1 ~ 2 seconds (MATLAB program on a common
laptop) for the nodes at each iteration in Ep, which could
be less than 0.01 second by C program with the same
hardware. Moreover, the communication cost of Ep is
slightly higher if compared with the estimators Fy and
E 4k r, where nodes need exchange extra messages (the
local estimates) among its neighbors. Informally, in Ep
each node ¢ needs 8 bytes more per iteration to broad-
cast, where 8 bytes accounts for extra measurements in
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float-point (double). Suppose there are 100 nodes in a
wireless sensor network, thus Ep needs 8N = 800 bytes
more to broadcast, which is less than 1 kB.

7 Conclusions and Future Work

In this paper, we characterized the performance of a de-
centralized peer-to-peer algorithm for estimating a time-
varying and multi-dimensional signal using a wireless
sensor network. Measurements are corrupted by additive
unknown and bounded disturbances, and communica-
tion occurs over channels with message losses. A math-
ematical framework was proposed to analyze the esti-
mator, which runs locally in each node of the network.
The performance analysis was carried out for networks
with both symmetrical and asymmetrical message losses
over the communication channels. We investigated how
the estimation quality depends on message loss process,
the network size and the average number of neighboring
nodes. The theoretical analysis showed that the estima-
tor converges, and the variance of the estimation error
is bounded even in the presence of severe message loss
probabilities. Numerical results illustrated the validity
and the benefits of our approach, which outperforms
other estimators available from the literature.

Future studies will be devoted to the extension of our
design methodology to non-linear cases, while allowing
to minimize the estimation variance over a future time
horizon. Lossy communication links with memory will
be considered. We also plan to consider the case of dis-
tributed control.
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Appendix

A Distributed Estimation of P%IL

In contrast to [7,13], we do not use the consensus-based
algorithms to obtain the matrix Py . We compute its
locally by solving a regularized prob-

estimate, PLPW,

lem as in [35]. Moreover, we need to extend the matrix
estimation by taking message losses into account. Let
J € N; and assume that for ¢t € (t1,t2), j ¢ Ny, , and

that j € N, , . Then heuristically we set

[P"”"“Jjj:mkax [P‘F”"l}kk7 [P‘pim]zj: [P‘P“HL[:O’

for I € NV;,while the other entries are kept the same as the
previous Pcpm2~ It is motivated by that the maximum

Ity

variance of the estimation error that a neighbor of a node
is affected by must not be larger than the worst variance
of the estimation error of other neighbors. Because all
nodes are collaborating to build the state estimation by
the same algorithm.



