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Abstract

We introduce a novel game of trusted computation in which a sensor equipped with limited computing power leverages a
central computer to carry out a specified data processing task on a large dataset collected over time. In normal circumstances,
the sensor would be able to stream the data to the central computer, which would then perform the computation and provide
the result. We assume, however, that the central computer can be under attack and we propose a strategy where the sensor
retains a limited amount of the data to counteract the effect of attacks. We formulate the problem within a game theoretic
framework where the sensor needs to decide an optimal fusion strategy using both the non-trusted output from the central
computer and locally stored trusted data. The sensor generates an estimate of the true computation that is fused with the
value from the third-party computation. We adopt an Iterated Best Response (IBR) scheme for each player to update its
action based on the opponent’s announced computation. At each iteration, the central computer reveals its output to the
sensor, who then computes its best response based on a linear combination of its private local estimate and the untrusted
third-party output. We characterize equilibrium conditions along with necessary and sufficient conditions for convergence of
the IBR. Numerical results are presented showing that the convergence conditions are relatively tight.
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1 Introduction and Related Works

The Internet of Things (IoT) [add citation] is the next
generation internet where many embedded devices are
interconnected and can exchange data. Typical exam-
ples of such devices are sensors, actuators, controller, etc.
Although such devices are becoming increasingly more
advanced and capable, the amount of data they can pro-
cess is still a small fraction of what they can collect. In
this context, it is clear that IoT devices need to leverage
intermediate but more capable devices that can store
and compute over larger data streams.
In this setting, we study the problem where a sensor (a
shorthand for IoT device) exchange data with a larger
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American Control Conference under the title Trusted Com-
putation with an Adversarial Cloud [3]. Corresponding au-
thor: Shaunak D. Bopardikar. Tel. +1-510-649-9974. This
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langbort@illinois.edu (Cédric Langbort).

and more powerful computer in order to carry out a com-
putation on data the sensor has collected over a certain
period of time. Under normal circumstances, the sensor
would be able to send/stream the data to such “central”
computer, which would then execute the data process-
ing and send back the result. However, we assume here
that the data stored in the central computer can be ma-
nipulated maliciously by an attacker. In this case, the
sensor has three options. The first is to retain a small
amount of the data and compute the function of inter-
est on such trustworthy data, knowing however that the
computation will not be as accurate given the small sam-
ple size; or, secondly, take the risk that the attack is only
mildly compromising the data on the central computer,
so that the result of the computation is close to the true
value; or, thirdly, try to exchange partial results itera-
tively with the central computer and fuse locally trusted
computation on small sample with tampered computa-
tion on the full dataset.
This paper formalizes this last scenario, which has the
other two as limiting cases. In particular, we model this
problem of trusted computation as a game between the
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sensor/central computer and the attacker. We design an
analyze a protocol in which each player plays its best re-
sponse and we then study convergence conditions. Fur-
thermore, in this paper we make a “worst case” assump-
tion, namely that the attacker knows exactly the fusion
strategy adopted by the sensor. We plan to relax this in
future work.
The approach we are considering in this paper is re-
lated to a new emerging field, called adversarial machine
learning, where two parties, a learner and an attacker,
are involved, see [8,2,12]. The learner is using the data
to train, for example, a classifier or a regressor, and the
attacker is modifying the data so that the learner ends
up training the algorithm incorrectly. In this context,
the problem is posed as a Bayesian game [12], where the
learner minimizes the effect of the attack on the learn-
ing algorithm, whereas the attacker maximizes the devi-
ation of such learning algorithm from the correct result
and towards a strategically chosen outcome, under the
assumption that only a subset of the data can be mod-
ified. In [12], for example, the e-mail spam problem is
considered, where the learner is set to train a classifier
to discriminate between spam and non-spam, while the
attacker tries to maximize the chances that a spam is
classified as non-spam.
The approach considered in this paper relates also to the
procedure of fictitious play (FP). In this procedure, each
player tries to learn the probability distribution from
which the opponent is drawing its actions [4,11]. A re-
cent body of work in the control literature analyzes con-
vergence of fictitious play for several scenarios [13,14,9].
In particular, [13] presents unified energy-based con-
vergence proofs that work for several special classes of
games under FP. In [14], convergence to Nash equilibria
is analyzed under the assumption that each player can
access the derivatives of the update mechanisms, leading
to dynamic FP. A variant of FP, known as Joint Strategy
FP, is proposed and the convergence analyzed for several
classes of games, especially in high-dimensional spaces,
see [9]. More recently, Gaussian cheap talk games, such
as [6], have been considered. In this context, a sender
(adversary) sends corrupted information to a receiver
(sensor) under the assumption that the adversary has
full knowledge of the receiver’s private information.

1.1 Main Contributions

The contributions of this paper are four-fold. First, we
formulate a new problem on trusted computation within
a game-theoretic framework and adopt an Iterated Best
Response (IBR) [10,7] algorithm to compute final strate-
gies for the sensor and the attacker. More specifically,
we consider a protocol such that at each iteration, the
attacker reveals its output to the sensor that then com-
putes its best response as a linear combination of its
private local estimate and of the untrusted output. The
attacker can then, based on the announced policy of the
sensor, decide its best response. There is a clear mis-
match in the information pattern between attacker and
sensor and, in particular, the fact that the attacker can-

not access the realization of the private local estimate of
the sensor distinguishes this work from the information
pattern considered in some other existing works such
as [6].
Second, we characterize conditions on the existence of
equilibria of the game. These conditions and the equilib-
ria themselves turn out to be functions of all of the prob-
lem parameters, viz., the private information belonging
to both players.
In order to obtain results from a single player’s per-
spective, a third contribution of this paper is to define
two notions of convergence for the IBR algorithm, de-
pending upon whether the algorithm converges for some
initial value picked by the attacker, weak convergence,
or for every initial value, strong convergence. We derive
necessary conditions for weak convergence and sufficient
conditions for strong convergence. If the algorithm con-
verges, then it also tells the sensor how to optimally fuse
its private estimate with the output. We identify regimes
in which some sufficient conditions are also necessary.
Numerical simulations indicate that the conditions are
relatively tight.
Fourth and finally, the analysis in this paper allows for
a certain level of mismatch in the distributions used by
the players in computing their respective cost functions.
This generalizes the analysis presented in the prelimi-
nary conference version [3], which assumed that the at-
tacker knows precisely the mean of the distribution used
by the sensor to compute its private estimate. Addition-
ally, in the special scenario considered in [3], the analysis
in this paper recovers the results from [3], and in one of
the cases, also improves the result.
Given that the proposed framework requires an iterative
process between sensor and the central computer, the
algorithm presented in this paper is suitable for com-
putation algorithms that are iterative in nature so that
partial results can be exchanged between sensor and the
central computer. Examples are eigenvalue/eigenvector
computation, matrix factorization, iterative optimiza-
tion methods, etc.
The connection of this work to control theory lies in
the fact that convergence analysis of the IBR essentially
leads to a closed loop dynamical system. This aspect
is similar in flavor to the set-ups analyzed in [13,14,9].
Using geometric relationships to bound the evolution,
we determine necessary and sufficient conditions on the
parameters involved which will lead to stability from
any/some initial conditions.

1.2 Paper Organization

The paper is organized as follows. The problem formu-
lation and the proposed approach is described in Sec-
tion 2. Conditions for the existence of equilibria together
with an insightful geometric interpretation are presented
in Section 3. Convergence results for the IBR algorithm
are derived in Section 4 along with supporting numeri-
cal results. Finally, conclusions and directions for future
research are discussed in Section 5. Proofs of the results
are available at ??.
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2 Problem Formulation

The problem scenario is depicted in Figure 1. This work
assumes that the data and the computation to be carried
out are such that it is possible for the sensor to compute
an estimate of the computation locally using some ran-
dom subset of the data, and that the statistics (up to
the mean with a finite second moment) about how the
actual value is distributed given a value of estimate is
known to the sensor.
For example, suppose that the data d ∈ RN×M , con-
sisting of N data points each represented by an M -
dimensional feature vector, is uploaded through a
trusted sensor to the third-party computer. During the
upload process, the sensor could retain a randomly

sparsified sample d̂ ∈ RN×M of the original data d.
The data, once stored on the central computer, can
be compromised by the attacker leading to a different
value d̄ ∈ RN×M . The sensor is interested to compute
the true value of the function y = g(d) ∈ Rk of the
data d where g : RN×M → Rk is an algorithm of in-
terest. For example, g(d) ∈ R could be the maximum

singular value of a matrix with d̂ being a sparsified
sample of d. The sensor has only an approximate knowl-

edge, ŷ = g(d̂) ∈ Rk, of y, obtained from the sparsi-

fied data d̂. The third-party computer computes the
value ȳ = g(d̄) ∈ Rk based on the corrupted data d̄.
This paper does not address the problem of how to

construct a sparsified sample d̂, but rather makes an
implicit assumption that for a given number of non-zero

elements in d̂ and a corresponding sparsification proce-
dure, the distribution of y given ŷ can be characterized
a priori. The actual construction of a specific sampling
procedure for a computation such as the maximum
eigenvalue would be a topic of future investigation and
we direct an interested reader to [1] and [5] for related
existing results.
The sensor needs to design a fusion function φ : Rk ×
Rk → Rk that provides yfused so that the effect of the
attack is minimized, i.e., the sensor seeks to minimize
the squared error between yfused and y in an expected
sense. On the other hand, the attacker seeks to drive the
fused value to be close to a different value yA instead of
the true y, and therefore, seeks to minimize the squared
error between yfused and yA in an expected sense. The
attacker returns a value ȳ ∈ Rk, which will be chosen in
order to minimize the mean squared error between yfused

and yA.
Given a value of ŷ, one can view the true value y as a
random variable, and we assume that the conditional
distribution of y given ŷ (y|ŷ) is known to the sensor.
From the sensor’s perspective, this work only requires
it to know the mean of y given ŷ and the fact that y
given ŷ has bounded variance. This paper proposes a
new protocol between sensor and the computer that will
enable a sensor to compute an optimal fusion strategy
yfused = φ(ŷ, ȳ) ∈ Rk, in the space of convex combi-
nations of the approximate value ŷ and the third-party

Fig. 1. Trusted Computation over an adversarial third-party
computer. The sensor has a large dataset out of which it

draws a sample d̂ and uploads the entire dataset onto the
central computer. The computer returns some value ȳ as
the output of the computation, while the sensor computes

a value ŷ based on the sample d̂. The goal is to fuse, using
a function φ(.), the two quantities ŷ and ȳ in an optimal
manner.

computer’s output ȳ, to minimize the mean square er-
ror, namely,

JD := Ey[‖yfused − y‖2 | ŷ] , (1)

where the norm ‖ · ‖ is the 2-norm. The goal of the
attacker is to pick a ȳ to minimize a different mean square
error, i.e.,

JA := Eŷ[‖yfused − yA‖2] , (2)

where yA is a value that the attacker chooses to corrupt
the sensor. We will assume that yA is a fixed and non-
random value known only to the attacker. In other words,
the goal of the attacker is to choose a value ȳ to be given
to the sensor as the output of the computation so that
when the sensor fuses this value with its private estimate
ŷ, the fused value yfused becomes close to a certain value
yA which is selected by the attacker. The value yA is the
value that the attacker wants the sensor to believe is the
true output. The attacker may decide to tamper with the
raw data to compute its ȳ, in which case it modifies d to d̄
such that ȳ = g(d̄). Alternatively, it may directly tamper
the correct output coming from the central computer, in
which case it simply replaces the correct value with its
own value ȳ.
The mismatch in the information structure available to
both players is reflected in their respective cost func-
tions in that the random variable relative to which the
expectation is computed is the one whose realization is
not known to that player.
In the space of allowed strategies, we choose the func-
tion φ(.) = φα(.) to be a convex combination of ŷ and ȳ,
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namely

yfused := φα(ŷ, ȳ) = αŷ + (1− α)ȳ . (3)

In other words, the sensor needs to compute anα ∈ [0, 1],
thus deciding the weight to attach to its own value ŷ and
the attacker’s output ȳ. Therefore, both cost functions,
JD and JA are functions of the action α ∈ [0, 1] of the
sensor and the action ȳ ∈ Rk of the attacker. To be
specific, let µ denote the expected value of y given ŷ using
a density function chosen by the sensor, modeling the
sensor’s knowledge about the data, and let ζ denote the
expected value of ŷ using the density function chosen by
the attacker, modeling the knowledge the attacker has
about the data. In the space of linear strategies (3), the
cost functions (1) simplifies to:

JD(α, ȳ) =

∫
Rk

‖αŷ + (1− α)ȳ − w‖2fy|ŷ(w)dw

= ‖α(ŷ − ȳ) + ȳ‖2 +

∫
Rk

‖w‖2fy|ŷ(w)dw

− 2(α(ŷ − ȳ) + ȳ)T
∫
Rk

wfy|ŷ(w)dw︸ ︷︷ ︸
µ

, (4)

where fx|y(·) denotes the probability density function
of a random variable x given y. The cost function (2)
simplifies to:

JA(α, ȳ) =

∫
Rk

‖αw + (1− α)ȳ − yA‖2fŷ(w)dw

= α2

∫
Rk

‖w‖2fŷ(w)dw + ‖(1− α)ȳ − yA‖2

+ 2α((1− α)ȳ − yA)T
∫
Rk

wfŷ(w)dw︸ ︷︷ ︸
ζ

. (5)

This is a non zero-sum game for which we will consider
the following notion of equilibrium.

Definition 1 (Equilibrium) An admissible pair
(α∗, ȳ∗) is an equilibrium if

JD(α∗, ȳ∗) ≤ JD(α, ȳ∗) , ∀α ∈ [0, 1], and

JA(α∗, ȳ∗) ≤ JA(α∗, ȳ) , ∀ȳ ∈ Rk .

Further, if α∗ ∈ (0, 1), then the resulting equilibrium pair
is said to be mixed. 2

In other words, a pair of strategies is in equilibrium if
no other strategy can give a strictly better cost against
the opponent’s strategy, from each player’s perspective.
Further, when the best response of the sensor is mixed,
it means that the sensor selects a non-trivial weighted
combination of ŷ and ȳ. However, it will be clear from

the next section that an explicit one-shot computation
of the equilibrium strategies requires the players to have
full knowledge of all the problem parameters, i.e., ŷ, y,
yA, and the expected values µ and ζ of y given ŷ and y,
respectively. Clearly, from one player’s point of view,
this information is not available. Indeed, yA is a pri-
vate information that the attacker has and is not shared
with the sensor and the ŷ is private information of the
sensor which is not shared with the attacker. Therefore,
we will consider the following iterative scheme in which
each player will announce its best response to a strategy
announced by the opponent, with the attacker playing
first. This protocol is summarized in Algorithm 1.

Algorithm 1 Iterated Best Response

Assumes: Attacker plays first, i.e., select a value for
ȳ0.
i = 0
αi = 0
# Exit when α reaches steady-state or becomes 1
while αi sequence has not converged do
i = i+ 1
# Client updates its action based on ȳi−1

αi = argminα∈[0,1] JD(α, ȳi−1).
# Attacker updates its action based on αi
ȳi = argminȳ JA(αi, ȳ).
# Exit and trust the sensor output only
if αi == 1 then

return αi
end if

end while
return αi and ȳi

To apply Algorithm 1, we will first need to compute the
best responses of each player against an action of the
opponent. Setting ∂JD/∂α = 0 in (4), we obtain the
unconstrained minimizer

(α(ŷ − ȳ) + ȳ)T (ŷ − ȳ)− (ŷ − ȳ)Tµ = 0

⇔ α∗unc(ȳ) =
(µ− ȳ)T (ŷ − ȳ)

‖ȳ − ŷ‖2
.

Due to the constraint α∗ ∈ [0, 1], the best response for
the sensor is:

α∗(ȳ) =


0 , if (ȳ − µ)T (ŷ − ȳ) ≥ 0 ,

1 , if (ŷ − µ)T (ȳ − ŷ) ≥ 0 ,
(ȳ − µ)T (ȳ − ŷ)

‖ȳ − ŷ‖2
, otherwise.

(6)

A similar calculation yields the best response for the
attacker:

ȳ∗(α) =


yA − αζ

1− α
, if α 6= 1 ,

any value , if α = 1 .
(7)
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Fig. 2. The locations for ȳ (in the subspace containing yA)
that lead to different values of α∗, given the values of yA, ŷ
and µ. The green locations will lead to α = 0, the red loca-
tions will lead to α = 1 and the blue locations will lead to a
mixed α.

Observe that ȳ∗ is a linear combination of yA and ζ.
Since we have a total of four parameters ŷ, ζ, yA and µ, it
is convenient considering the plane containing the three
points ŷ, ζ, yA and let µ̂ be the orthogonal projection of
µ on to this plane. Therefore, we can write µ := µ̂+µ⊥.

Since µ⊥
T

(ȳ − ŷ) = 0, the expression for α∗(ȳ) can be
rewritten as

α∗(ȳ) =


0 , if (ȳ − µ̂)T (ŷ − ȳ) ≥ 0 ,

1 , if (ŷ − µ̂)T (ȳ − ŷ) ≥ 0 ,
(ȳ − µ̂)T (ȳ − ŷ)

‖ȳ − ŷ‖2
, otherwise.

(8)

Interestingly, we can give a geometric interpretation
to (8) and (7), as shown in Figure 2. In particular, the
figure illustrates the locations of ȳ that lead to different
values of α∗, given the values of yA, ŷ and µ̂. In the
plane defined by yA, ŷ and ζ, a given subspace con-
taining yA can be divided into at most three distinct
regions corresponding to the three regimes in (8). The
green regime corresponds to the set of points ȳ for which
α∗(ȳ) = 0 and when it exists, it lies between two blue
regimes corresponding to the set of points ȳ for which
α∗(ȳ) ∈ (0, 1). The red regime corresponds to the set
of points ȳ for which α∗(ȳ) = 1. Note that the bound-
ary points between the green and blue regimes satisfy
the property that the lines joining them to µ̂ and ŷ are
orthogonal to each other, as highlighted in Figure 2.
The termination condition within the if loop of Algo-
rithm 1 is due to the fact that when α = 1, it implies
that the output of the central computer is not to be
trusted, and thereafter, the computer is not providing
any further useful information than the sensor’s private
value of ŷ. In order to discard trivial initial conditions
for which Algorithm 1 would exit at the first iteration,
we will restrict our discussion to non-trivial initial val-
ues of ȳ0 defined next.

Definition 2 (Non-trivial initial condition) An
initial condition ȳ0 is said to be non-trivial if Algorithm 1
does not exit at the first iteration.

We will consider the following two notions of convergence
for Algorithm 1.

Definition 3 (Weak Convergence) Algorithm 1 is
said to possess weak convergence property if, for some
non-trivial initial condition ȳ0 and for some values of
the means µ and ζ, Algorithm 1 outputs the final value
of α∗ ∈ [0, 1).

Definition 4 (Strong Convergence) Algorithm 1 is
said to possess strong convergence property if, for ev-
ery non-trivial choice of ȳ0, and for every value of the
means µ and ζ, Algorithm 1 outputs the final value of
α∗ ∈ [0, 1).

In the sequel, we will see that the weak convergence con-
cept will be useful from the sensor’s perspective, whereas
strong convergence will be useful from the attacker’s per-
spective.
The main contributions in the rest of this paper are to
present conditions on the problem parameters, viz. ŷ ,y,
yA, µ and ζ, under which: 1) equilibrium strategies exist
for Algorithm 1 and 2) Algorithm 1 demonstrates weak
or strong convergence properties. Whenever Algorithm 1
converges, then the steady-state strategies actually cor-
respond to an equilibrium in the sense of Definition 1.

3 Equilibrium Strategies

In this section, we will derive conditions on the param-
eters ŷ, yA, µ and ζ under which equilibria exist for the
system of equations (6) and (7).
Let δ := ζ−µ, zA := yA−ζ, and ẑ := ŷ−ζ. The following
is the main result on the equilibria of the above system.

Theorem 3.1 (Equilibrium) For the system (6) and
(7), we have the following:

i. The pair of strategies (α∗, ȳ∗) = (0, yA) is an equi-
librium if and only if (yA−µ)T (ŷ−µ) ≥ ‖yA−µ‖2.

ii. An equilibrium in mixed strategies exists if and only
if (ẑT (ẑ + 2zA − δ))2 ≥ 4zTA(ẑ + zA − δ)ẑT ẑ.

This result provides conditions on the game parameters
under which one of the two types of equilibria considered
in this paper would exist. The first type is the one when
α∗ = 0, i.e., the sensor completely trusts the output from
the central computer. The condition in (i) essentially
describes the set of values for the attacker’s intent yA for
which it will be beneficial for the sensor to use the output
ȳ from the central computer than its own value ŷ. The
second type is the one which will require the sensor to
fuse its private value ŷ with the value ȳ in a non-trivial
way (α∗ ∈ (0, 1)).
Proof: The best response of the players for the case
when α∗ = 0 yields ȳ∗ = yA. Conversely, if ȳ∗ = yA,

5



then α∗ = 0 if and only if

(yA − µ)T (ŷ − yA) ≥ 0

⇔ (yA − µ)T (ŷ − µ− (yA − µ)) ≥ 0 ,

which establishes the first claim.
For the second claim, since we are searching for mixed
policies α∗, we substitute the expression for α∗(ȳ) into
the fixed point equation for ȳ to obtain

ȳ =
yA‖ŷ − ȳ‖2

(ŷ − µ)T (ŷ − ȳ)
+

(µ− ȳ)T (ŷ − ȳ)

(µ− ŷ)T (ŷ − ȳ)
ζ (9)

Subtracting ζ from both sides, we have

ȳ − ζ =
yA‖ŷ − ȳ‖2

(ŷ − µ)T (ŷ − ȳ)
+
( (µ− ȳ)T (ŷ − ȳ)

(µ− ŷ)T (ŷ − ȳ)
− 1
)
ζ

ȳ − ζ =
yA‖ŷ − ȳ‖2

(ŷ − µ)T (ŷ − ȳ)
− ‖ŷ − ȳ‖2

(µ− ŷ)T (ŷ − ȳ)
ζ.

By denoting z̄ := ȳ − ζ, we obtain

z̄ =
‖ẑ − z̄‖2

(ẑ − δ)T (ẑ − z̄)
zA ⇒ z̄∗ = rzA ,

where r is a scalar that must satisfy

r =
‖ẑ − rzA‖2

(ẑ − rzA)T (ẑ − δ)
.

On simplifying, we obtain the following quadratic equa-
tion in r:

zTA(ẑ + zA − δ)r2 − ẑT (ẑ + 2zA − δ)r + ẑT ẑ = 0 .

The condition now follows from the existence of real
roots to the above quadratic equation. 2

Clearly, the computation of equilibria requires complete
information of the problem parameters. Therefore, in the
next sub-section, we will characterize conditions on the
parameters under which Algorithm 1 will converge.

4 Convergence Analysis

In this section, we will derive conditions under which
Algorithm 1 possesses weak and strong convergence.
From the point of view of the sensor, the goal is to char-
acterize conditions on the attack parameter yA for which
Algorithm 1 will converge in the weak and in the strong
sense. However, there is an additional uncertainty on
where the attacker’s mean ζ will lie. We will commence
the convergence analysis for a given value of ζ and then
extend it to the case when there is a bound on the amount
of mismatch, such as one in the following assumption.

Assumption 4.1 (Mismatch parameter) The mis-
match ζ − µ satisfies

‖ζ − µ‖ ≤ ε

1 + ε
‖ŷ − µ‖ ,

for some given value of ε ∈ [0, 1].

This assumption is reasonable to expect because the de-
viation ‖ŷ−µ‖ will be relatively large when only a small
subset of the data being sampled. The convergence anal-
ysis will require two intermediate results using geometry
which we present in the next sub-section.

4.1 Preliminary Geometric Results

Given any yA, we will first show that Assumption 4.1
leads to the following upper bound on ‖ζ−µ̂‖, where µ̂ is
the orthogonal projection of µ on to the plane containing
ζ, yA and ŷ.

Lemma 4.2 (Mismatch bound) For given values of
ζ, yA and ŷ, under Assumption 4.1, we have ‖ζ − µ̂‖ ≤
ε‖ŷ − µ̂‖.

We will also require another geometric result which will
aid the proof of the necessary condition. We introduce
the following notation: given two vectors x1, x2 ∈ Rk, the
vector P(x1, x2) ∈ Rk denotes the orthogonal projection
of x1 onto x2.

Lemma 4.3 Suppose that a point ȳ satisfies:
i. α∗(ȳ) ∈ (0, 1), and

ii. ȳ lies in the closure of the half plane defined by the
line joining ŷ and yA with the side not containing µ̂.

Then, ‖P(ŷ − µ̂, yA − ŷ)‖ ≥ ‖P(ŷ − µ̂, ȳ − ŷ)‖.

4.2 Weak Convergence

We now begin our analysis of a necessary condition as-
suming that yA and ζ are known, which therefore implies
that µ̂ is known.

Theorem 4.4 (Weak Convergence given ζ, yA)
For given values of ζ, ŷ and yA, the following hold:

i. For Algorithm 1 to converge to (α∗ = 0, ȳ∗ = yA),
yA must satisfy (yA − µ̂)T (ŷ − yA) ≥ 0.

ii. Under Assumption 4.1, for Algorithm 1 to weakly
converge, yA must satisfy (ŷ − µ̂)T (yA − ŷ) < 0.

iii. Let Ψµ̂ be defined as the closure of the half-plane de-
fined by the line joining ŷ and yA and which contains
the point µ̂. For Algorithm 1 to yield a converging
sequence of mixed α∗ ∈ (0, 1), yA must satisfy either
one of the following:
a. ‖yA − ζ‖ ≤ ‖P(ŷ − µ̂, ŷ − yA)‖ , ζ ∈ Ψµ̂,
b. ‖yA − ζ‖ ≤ ‖ŷ − µ̂‖ , ζ /∈ Ψµ̂.

Proof: Algorithm 1 results into a steady-state value
(α∗ = 0, ȳ∗ = yA) only if (cf. (6) and (7)),

(yA − µ)T (ŷ − yA) ≥ 0⇔ (yA − µ̂)T (ŷ − yA) ≥ 0 ,
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since µ̂ is the orthogonal projection of µ on to the plane
containing ζ, yA and ŷ. This proves the first case.
To prove the second case, suppose that Algorithm 1
converges to an α∗ ∈ [0, 1) from some arbitrary, non-
trivial initial condition ȳ0. If ȳ0 is in the green region
(α0 = 0), then after one iteration of Algorithm 1, we ob-
tain ȳ1 = yA. If yA is also in the green region (i.e., cor-
responding to α1 = 0), then the algorithm converges to
an equilibrium with α∗ = 0 and case i) applies. On the
other hand, if yA is in the blue region (α ∈ (0, 1)), then it
follows that ȳ1 = yA, and thus ȳ1 lies in the blue region
(α ∈ (0, 1)). Therefore, we can assume that without any
loss of generality, ȳ0 is in the blue region. From (8), it
needs to hold that (ŷ− µ̂)T (ŷ− ȳ0) > 0. Now, substitut-
ing (7) into (8) and on following the same steps that led
to (9), we have that after one iteration of Algorithm 1,
ȳ1 is such that the vector ȳ0 − ζ is a positive scalar mul-
tiple of the vector yA − ζ. More precisely, we have

ȳ1 − ζ =
‖ŷ − ȳ0‖2

(ŷ − µ̂)T (ŷ − ȳ0)
(yA − ζ) .

Now, observe that the ratio

‖ŷ − ȳ0‖2

(ŷ − µ̂)T (ŷ − ȳ0)
=

‖ŷ − ȳ0‖
‖P(ŷ − µ̂, ŷ − ȳ0)‖

> 1 , (10)

which implies that for any non-trivial ȳ0, ȳ1 − ζ is a
positive scalar multiple greater than unity of yA − ζ.
Let us assume, for the sake of arriving at a contradiction,
that 0 ≤ (ŷ− µ̂)T (yA− ŷ), namely that the condition of
case ii) does not hold. Therefore, we can write

0 ≤ (ŷ − µ̂)T (yA − ŷ)

⇒0 ≤ (ŷ − µ̂)T (yA − ζ + ζ − µ̂+ µ̂− ŷ)

⇒‖ŷ − µ̂‖2 − ‖ŷ − µ̂‖‖ζ − µ̂‖ cosψ ≤ (ŷ − µ̂)T (yA − ζ) ,

where ψ is the smaller angle between the vectors ŷ − µ̂
and ζ−µ̂. Since Assumption 4.1 holds, Lemma 4.2 holds.
Therefore, the left hand side of the above inequality is
non-negative, and thus,

0 ≤ (ŷ − µ̂)T (yA − ζ)⇒ 0 ≤ (ŷ − µ̂)T (ȳ1 − ζ), (11)

since ȳ1 − ζ is a positive scalar multiple of yA − ζ.
Now, from (10), we can write

0 ≤ (ŷ − µ̂)T (yA − ŷ)

= (ŷ − µ̂)T
(

1

r
(ȳ1 − ζ) + + (ζ − ŷ)

)
≤ (ŷ − µ̂)T (ȳ1 − ŷ) ,

where the second inequality follows from (11) and from
the fact that r = ‖ŷ− ȳ0‖2/((ŷ− µ̂)T (ŷ− ȳ0)) ≥ 1. This
however implies, from (8), that ȳ1 is in the red region
(α1 = 1). But this is not possible as we already showed

Fig. 3. Illustrating one possible scenario in the proof of The-
orem 4.4. In this scenario, the points ζ and µ̂ lie on the same
side of the line joining yA and ŷ, i.e., the requirement in the
third case in the statement of Theorem 4.4 is satisfied, which
leads to inequality (14) to hold. In gray, we indicate Ψµ̂, the
closure of the half-plane defined by the line joining ŷ and yA
and which contains the point µ̂.

that ȳ1 is in the blue region (α = (0, 1)). This proves the
second case.
To prove the last case, without loss of generality, we can
assume that (ȳ0−ζ) is a positive scalar multiple of yA−ζ,
and that ȳ0 is in the blue region (i.e., corresponding to
α ∈ (0, 1)), using the previous case.
Suppose that for every i ≥ 0, ȳi is in the blue region,
i.e., every αi ∈ (0, 1). Then consider the recursion,

‖ȳi − ζ‖ =
‖ŷ − ȳi−1‖2‖yA − ζ‖
|(ŷ − µ̂)T (ŷ − ȳi−1)|

⇔ ‖ȳi − ζ‖ =
‖ŷ − ȳi−1‖‖yA − ζ‖
‖P(ŷ − µ̂, ŷ − ȳi−1)‖

, (12)

Note that (12) may be viewed as a discrete-time dynam-
ical system in ȳ. Replacing ȳ0 by ȳi−1 in (10), we have
that for every i ≥ 1, and for any ȳ0, such that ȳ0 − ζ is
a positive scalar multiple of yA − ζ,

‖ȳi−1 − ζ‖ > ‖yA − ζ‖ . (13)

We need now to distinguish two cases.
a. If ζ ∈ Ψµ̂, then (13) implies that for every i ≥ 1, the

point ȳi−1 ∈ Ψc
µ̂, namely the complement of Ψµ̂.

We refer to Figure 3 for a geometric interpretation
of the proof. Additionally, we have that α∗(ȳi−1) ∈
(0, 1). Thus, applying Lemma 4.3, we conclude that
for every i ≥ 1,

‖P(ŷ − µ̂, ŷ − ȳi−1)‖ ≤ ‖P(ŷ − µ̂, ŷ − yA)‖ . (14)
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Further, from applying the triangle inequality to
the three points ȳi−1, ŷ and ζ, we have

‖ŷ − ȳi−1‖ ≥ ‖ȳi−1 − ζ‖ − ‖ŷ − ζ‖ . (15)

Combining this together with (14) and (12) yields

‖ȳi − ζ‖ ≥
‖yA − ζ‖(‖ȳi−1 − ζ‖ − ‖ŷ − ζ‖)

‖P(ŷ − µ̂, ŷ − yA)‖
,

which is a linear system in the quantity ‖ȳi − ζ‖.
This implies that Algorithm 1 will output a con-
verging sequence of mixed α∗’s only if ‖yA − ζ‖ ≤
‖P(ŷ − µ̂, ŷ − yA)‖.

b. If ζ ∈ Ψc
µ̂, then we can apply the following upper

bound ‖P(ŷ− µ̂, ŷ− ȳi)‖ ≤ ‖ŷ− µ̂‖, which follows
from the fact that the length of the projection of a
vector x onto any another vector can never exceed
the length of x itself. Following the same steps as
in the previous case, we conclude that the sequence
‖ȳi − ζ‖ will converge only if ‖yA − ζ‖ ≤ ‖ŷ − µ̂‖.
This proves the iii) case.

2

We numerically verify this result by studying the region
of divergence for Algorithm 1 in two dimensions. In the
planar case, the value of the mean µ = µ̂ = (0, 0), and
the sensor’s value ŷ = (0.8, 0). The attacker’s mean,
ζ = (0.3,−0.2). For every value of yA on a grid in the
neighborhood of µ̂, we ran Algorithm 1 for a set of dif-
ferent initial values ȳ0. The results are summarized in
Figure 4. If the algorithm converged 1 to an α∗ ∈ [0, 1)
for some choice of ȳ0, then the corresponding point yA
is shown as a (green) dot. Otherwise, it is shown as a
(red) cross. The analytically derived necessary condi-
tions from Theorem 4.4 is shown as a black dashed con-
tour.
We now revisit the fact that the parameter ζ is not known
to the sensor. Suppose that ζ ∈ C, where C is a set known
to the sensor and which satisfies Assumption 4.1. Define
the set Nζ as the set of all points x ∈ Rk which satisfy
the necessary conditions from Theorem 4.4. Then, the
following result holds.

Corollary 4.5 (Necessary Condition) Suppose
that C is a set of all ζ ∈ Rk that satisfies Assumption 4.1.
Then, a necessary condition for weak convergence of
Algorithm 1 is that yA ∈

⋃
ζ∈C Nζ .

In Figure 5 we plot the analytic condition from Corol-
lary 4.5 for different sets C in R2. Since this example is
planar, µ̂ = µ. In particular, let the value of the mean
µ = (0, 0), the sensor’s value ŷ = (1, 0), and the set C
be different circles of increasing radii around µ. Figure 5

1 The convergence condition in Algorithm 1 was approxi-
mated by running the while loop for a sufficiently large num-
ber of iterations. In our simulations, we used 100 steps.

Fig. 4. Numerically generated plot to study the region of di-
vergence for Algorithm 1 in two dimensions. The value of the
mean µ̂ = (0, 0) (shown as a (magenta) star), the attacker’s
mean ζ = (0.3,−0.2) (shown as a (black) diamond) and the
sensor’s value ŷ = (0.8, 0), shown as a ( black) square. For
every value of yA = [yA(1), yA(2)] on a grid in the neighbor-
hood of µ, we run Algorithm 1 for a set of different initial
values ȳ0. If the algorithm converges to an α∗ ∈ [0, 1) for
some choice of ȳ0, then the corresponding point yA is shown
as a (green) dot. Otherwise, it is shown as a (red) cross. The
analytically derived necessary conditions from Theorem 4.4
is shown as a black dashed contour.

shows how the set
⋃
ζ∈C Nζ evolves with increasing ra-

dius, δ, of C. As is expected, the set computed for a
higher values of the radius contains the set computed for
a lower one. In other words, for a higher level of uncer-
tainty about the attacker’s mean ζ, the necessary con-
dition becomes more conservative.

4.3 Strong Convergence

The next result establishes a sufficient condition for
strong convergence.

Theorem 4.6 (Strong Convergence given ζ, yA)
For given values of ζ, ŷ and yA, Algorithm 1 possesses
strong convergence if

i. (yA − ζ)T (ŷ − µ̂) ≤ 0 , and (16)

ii. ‖yA − ζ‖ ≤ min(‖P(ŷ − µ̂, yA − ζ)‖,
‖P(ŷ − µ̂, yA − ŷ)‖) . (17)

Additionally, condition (16) is also necessary for strong
convergence.

Proof: Following the same steps that lead to (13) in
the proof of Theorem 4.4, we can assume without any
loss of generality that ȳ0− ζ is a positive scalar multiple
(greater than unity) of yA − ζ. Recall (12):

‖ȳi − ζ‖ =
‖ŷ − ȳi−1‖

‖P(ŷ − µ̂, ŷ − ȳi−1)‖
‖yA − ζ‖ . (18)
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Fig. 5. Plot of how the analytic necessary condition from
Corollary 4.5 evolves for increasing radii of the set C which
contains ζ. This plot has been numerically generated by sam-
pling 100 points uniformly randomly out of circles C of radii δ
equal to zero (solid (red) line), 0.2 (dotted (green) line), and
0.4 (dashed (blue) line). In this figure, we show ŷ as a (black)
square and µ as a (black) dot.

Ψµ̂

Fig. 6. Illustrating first of the two possible configurations:
ζ ∈ Ψµ̂ (the closed half-plane defined by the line joining ŷ
and yA and contains the point µ̂) in the proof of Theorem 4.6.

Observe that in the regime given by (16), the angle be-
tween the vectors yA − ζ and ŷ − µ̂ lies in the interval
[π/2, π]. In this regime, for every i ≥ 1, one out of the
following two possibilities occurs.

i. ‖P(ŷ − µ̂, ŷ − ȳi−1)‖ ≥ ‖P(ŷ − µ̂, yA − ζ)‖ , (19)

which holds whenever ζ is contained in Ψµ̂
2 . This

can be seen in Figure 6. Equality is achieved when
ȳi−1 has a magnitude equal to infinity.

ii. ‖P(ŷ − µ̂, ŷ − ȳi−1)‖ ≥ ‖P(ŷ − µ̂, yA − ŷ)‖ , (20)

which holds whenever ζ is not contained in the clo-
sure of the half plane defined by the line joining ŷ
and yA and which contains the point µ̂. This can

2 Recall that we defined Ψµ̂ to be the closed half-plane de-
fined by the line joining ŷ and yA and contains the point µ̂.

Ψµ̂

Fig. 7. Illustrating the second of the two possible configu-
rations: ζ /∈ Ψµ̂ (the closed half-plane defined by the line
joining ŷ and yA and contains the point µ̂) in the proof of
Theorem 4.6.

be seen in Figure 7. Equality is achieved when ȳi−1

has a magnitude equal to infinity.
Therefore, we conclude that

‖P(ŷ − µ̂, ŷ − ȳi−1)‖ ≥
min(‖P(ŷ − µ̂, yA − ζ)‖, ‖P(ŷ − µ̂, yA − ŷ)‖) . (21)

Further, applying the triangle inequality to the set of
points ζ, ŷ, and ȳi−1, we obtain

‖ŷ − ȳi−1‖ ≤ ‖ȳi−1 − ζ‖+ ‖ŷ − ζ‖ . (22)

Combining (18), (21) and (22), we obtain

‖ȳi − ζ‖ ≤
‖yA − ζ‖(‖ȳi−1 − ζ‖+ ‖ŷ − ζ‖)

min(‖P(ŷ − µ̂, yA − ζ)‖, ‖P(ŷ − µ̂, yA − ŷ)‖)
,

which converges if condition (17) is satisfied.
We show the necessity of (16) through the following
construction. Suppose that condition (16) is violated.
Equivalently, suppose that the angle between the vec-
tors yA − ζ and ŷ − µ̂ is in the interval [0, π/2) (we
refer the reader to Figure 3 for an illustration). Now, we
can choose a ȳ0 to be arbitrarily close to the red region
(α = 1). The coefficient in front of ‖yA− ζ‖ in (18) can
be made arbitrarily large. Therefore, in one iteration of
the algorithm, α1 = 1. This establishes the necessity
of (16). 2

This result is numerically verified in Figure 8. In this
figure, condition (16) is the vertical line passing through
the point ζ (the black diamond). We can see that there
are no green points that lie strictly to the right of this
vertical line, thereby numerically verifying the necessity
of (16).
Akin to the necessary condition, we seek a result which
does not depend upon the knowledge of ζ. Suppose that
ζ ∈ C̄, where C̄ is a set known to the sensor. Define the
set Sζ as the set of all points which satisfy the sufficient
conditions from Theorem 4.6. Then, the following result
holds.
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Fig. 8. Numerically generated plot to study the region of con-
vergence for Algorithm 1 in two dimensions. In the planar
case, the value of the mean µ̂ = µ = (0, 0) (shown as a (ma-
genta) star), the attacker’s mean ζ = (0.3,−0.2) (shown as a
(black) diamond) and the sensor’s value ŷ = (0.8, 0), shown
as a (black) square. For every value of yA = [yA(1), yA(2)]
on a grid in the neighborhood of µ, we run Algorithm 1 for a
set of different initial values ȳ0. If the algorithm converges to
an α∗ ∈ (0, 1) for every choice of ȳ0, then the corresponding
point yA is shown as a (green) dot. Otherwise, it is shown
as a (red) cross. The analytically derived sufficient condition
from Theorem 4.6 is shown as a solid (blue) contour. The
analytically derived necessary condition from Theorem 4.4
is shown as a dashed (black) contour.

Corollary 4.7 (Sufficient Condition) A sufficient
condition for strong convergence of Algorithm 1 is that
yA ∈

⋂
ζ∈C̄ Sζ .

We now plot the analytic condition from Corollary 4.7
for different sets C̄. In particular, let the value of the
mean µ̂ = µ = (0, 0) (since this is a planar case), the sen-
sor’s value ŷ = (0.8, 0), and the set C̄ be different circles
of increasing radii around µ. Then, Figure 9 shows how
the set

⋂
ζ∈C̄ Sζ evolves with increasing radius of C̄. As

is expected, the set computed for a smaller radius con-
tains the set computed for one with higher radius. Since
the sufficient condition is of interest to the attacker, we
can see that with higher uncertainty in the mismatch
between the means, the set of values of yA that guaran-
tee convergence of Algorithm 1 shrinks in size, making it
increasingly difficult for an attacker to always guarantee
convergence of Algorithm 1.

5 Conclusion and Future Directions

This work introduced a novel approach to trusted com-
putation when a central computer is leveraged but is
likely to be compromised by an adversary. In our ap-
proach, we considered a sensor that may perform approx-
imate but trusted computation on partial data, which is
then fused with the output of the central computer in
an optimal manner. We proposed a game-theoretic for-
mulation and formalized an iterated best response algo-

Fig. 9. Plot of how the analytic necessary condition from
Corollary 4.7 evolves for increasing radii of the set C̄ which
contains ζ. This plot has been numerically generated by sam-
pling 100 points uniformly randomly out of circles C̄ of radii
equal to zero (solid (red) line), 0.2 (dotted (green) line), and
0.4 (dashed (blue) line). In this figure, we show ŷ as a (black)
square and µ as a (black) dot.

rithm. Formal statements were derived that characterize
parameter regimes under which the iterative algorithm
converges. The derived necessary and sufficient condi-
tions become relatively tight in the case when the dis-
tributions of the unknown random variables used by the
defender and the attacker to compute their respective
cost functions have identical means. Numerical simula-
tions validate our theoretical results.
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