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Abstract— A probabilistic pursuit–evasion game from the
literature is used as an example to study constrained communi-
cation in multi-robot systems. Communication protocols based
on time-triggered and event-triggered synchronization schemes
are considered. It is shown that by limiting the communication
to events when the probabilistic map updated by the individual
pursuer contains new information, as measured through a
map entropy, the utilization of the communication link can be
considerably improved compared to conventional time-triggered
communication.

I. INTRODUCTION

Multi-robot systems have many advantages compared to
single-robot systems, including improved flexibility, sensing,
and reliability. For most mobile robot systems, one needs to
address challenges related to sensor noise, self-localization,
and partial knowledge of the environment. For a multi-robot
system, the inter-robot communication adds to this list. In
practice, every communication channel has a limited band-
width, which is due to the physical laws on the achievable
data rate and to that channels might be shared with other
users. The performance of the multi-robot system is often
highly dependent on the utilization of the communication
network. Still, integrated design of communication protocols
has so far gained little attention in the literature of multi-
robot systems, cf., [1], [2].

The main contribution of this paper is to illustrate how
information theory [3], [4] can be used in the design of a
multi-robot system, in order to optimize the communication
utilization with respect to a control performance. We let a
pursuit–evasion game [5], [6], [7], [8] with several pursuers
serve as a prototype system, since it is a good representative
for many multi-robot tasks. In particular we consider a prob-
abilistic approach for pursuit–evasion where each pursuer
build a probabilistic map of the environment [7], [9]. Map
entropy is used as an information measure of the probabilistic
map. It establishes an event-triggered communication scheme
for the pursuers, which is compared with a time-triggered
scheme with periodic communications. The considered multi-
robot problem can be viewed as a realistic benchmark prob-
lem for the design of integrated control and communication
systems. Recent work in that area has focused mainly on
stabilizability under limited communication, e.g., [10], [11].
For a stochastic control system, the advantage of event-
triggered control compared to time-triggered was discussed
by Åström and Bernhardsson [12]. For distributed real-

time systems, design specifications sometimes lead to that
a time-triggered scheme is instead preferable, as advocated
by Kopetz [13].

The paper is organized as follow. In Section II we extend
the pursuit–evasion model of Hespanha et al. [7] by introduc-
ing an explicit broadcasting communication protocol for the
pursuer, in which they synchronize their probabilistic maps
by broadcasting the current map to each other. Two particular
communication schemes are discussed in Section III: time-
triggered and event-triggered. The synchronization events
are in the latter based on the probabilistic map entropy. In
Section IV quantization is utilized to cope with bandwidth
limitations. It is shown that the map entropy can be used to
quantize the probabilistic map in an efficient way. Simulation
results are presented in Section V.

II. PURSUIT–EVASION WITH COMMUNICATION

We consider a pursuit–evasion game with np > 1 pursuers,
P1, . . . , Pnp

, and one randomly moving evader. Following
Hespanha et al. [7], we suppose that the game is played in
a finite-dimensional square space, uniformly partitioned in
n2

c < ∞ cells denoted

X = {1, 2, . . . , nc} × {1, 2, . . . , nc}

Each cell can be occupied by the evader, a pursuer or an
obstacle. Neither the evader nor the pursuers can occupy a
cell with an obstacle, although the evader and a pursuer can
share a cell. The latter corresponds to a capture of the evader.
We assume discrete time t ∈ T = {0, 1, 2, . . . }. The motions
of the pursuers and the evader are modelled as a controlled
Markov chain, see [8] for details. Pursuer Pi, i = 1, . . . , np,
senses at each time instance t ∈ T the triple

zi(t) = {si(t),oi(t), ei(t)}

where si(t) ∈ X is the position of the pursuer, oi(t) ⊂ X
is a measurement of the obstacle locations sensed by the
pursuer, and ei(t) ∈ X is the corresponding measurement of
the evader1. We assume that all sensors (detecting position,
obstacles, and evader) are ideal, and thus are not affected by
measurement noise etc. The measurement space is denoted
Z = X × 2X ×X , where 2X is the power set of X .

1Boldface indicates a random variable and the normal typeface its
realization.



A. Synchronization
We extend the pursuit–evasion model of Hespanha et

al. by introducing limited pursuer communication. Pursuers
gather individual sensor information, make local decisions
and communicate at synchronization time instances τ ∈ T .

Definition 2.1: A synchronization is a complete broadcast-
ing communication in which all pursuers exchange informa-
tion with each other. Denote the data received by pursuer
Pi

Yi(τ) =
{
yj(τ)

}
j 6=i

where yj(τ) is the data transmitted by Pi.
Transmitted data Y i is in this paper a probabilistic map,
as introduced in next section. A synchronization is depicted
in Figure 1: the network is simultaneously accessed by all
pursuers when a synchronization is performed. In the paper
we consider two types of synchronization: time-triggered and
event-triggered.

Definition 2.2: A time-triggered synchronization is a syn-
chronization that occurs at a time τt ∈ {∆, 2∆, . . . }, where
∆ ∈ T is the synchronization period. An event-triggered
synchronization occurs at a time τe ∈ T , at which a pre-
specified event takes place.

B. Probabilistic Map
The probabilistic map for a pursuer is the probability mass

function for the position of the evader conditioned on the
available data up to time t.

Definition 2.3: An element of the probabilistic map of
pursuer Pi is given by

p̃i
t+1(xe, Zt) = P (xe(t + 1) = xe|Z

i
t = Zt) (1)

where Zi
t ∈ {zi(0), . . . , zi(t)}, is the sequence of measure-

ments taken by pursuer Pi up to time t and xe(t) ∈ X is the
position of the evader at time t.
The probabilistic map is a square matrix, where each element
is given by equation (1). The map is updated through a two-
step algorithm: a measurement step in which P (xe(t) =
xe|Z

i
t = Zt) is computed using the current measurements,

and a prediction step in which p̃i
t+1(xe, Zt) is computed

using an evader motion model, see [7] for details. The game
starts with an a-priori probabilistic map p̃i

0|−1(xe, ∅) that we
assume to be the uniform distribution.

C. Control Policy
Let ui(t) denote the control action of Pi, which gives the

position of Pi at time t + 1. We consider greedy control
policies with constrained motion for the pursuer, i.e.,

ui(t) = arg max
v∈N (si)

pi
t+1(v, Zt, Yt) (2)

where N (si) are all neighboring cells of the current po-
sition si of Pi. Thus, at t the control policy moves Pi

to a neighboring cell v, which maximizes the conditional
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Fig. 1. At a synchronization time τ ∈ T , each pursuer Pi broadcasts
yi(τ) to the network and receives Yi(τ) = {yj(τ)}j 6=i.

probability of finding the evader at t + 1. The greedy policy
does not maximize the local probabilistic map p̃i

t+1, but the
probabilistic map pi

t+1 which we let depend also on the
probabilistic maps received through the network; hence the
greedy policy (2) depends on the local measurement Zt and
communicated data Yt. The fusion of probabilistic maps at
a synchronization time is computed as a normalized product
of all maps, i.e., as an independent opinion pool [14]. This
is based on an assumption that the pursuers are far from
each other between consecutive synchronization instances.
Measurements are thus considered to be approximately inde-
pendent, cf., [15].

III. ENTROPY-TRIGGERED SYNCHRONIZATION

In this section we introduce an event-triggered synchro-
nization scheme based on the map entropy. We use the
notation

mi
x(t) = pi

t+1(x, Zt, Yt)

for element x = (k, `) ∈ X of the probabilistic map of Pi

and we let M i(t) denote the corresponding matrix. Inspired
by information theory [4] we make the following definitions.

Definition 3.4: The map entropy H of a probabilistic map
M is

H(M) = −
1

2 log nc

∑

x∈X

mx log mx

Definition 3.5: The relative map entropy D of two prob-
abilistic maps M and N is

D(M ||N) =
∑

x∈X

mx log
mx

nx

In particular, the relative map entropy between the prob-
abilistic map M and the uniform probabilistic map N =
n−2

c 1nc×nc
is given by

D(M ||N) =
1 − H(M)

2 log nc

In the following we consider two event-triggered synchro-
nization schemes: one based on the map entropy and the
other based on the relative map entropy.



A. Synchronization based on dynamic threshold
Let a synchronization event be triggered whenever

H(M i(t)) < λ(t), where λ(t) is the synchronization thresh-
old. The threshold is updated according to

λ(t + 1) =

{
α λ(τk), if t + 1 = τk;
λ(t), otherwise.

with λ(0) = λ0 > 0

with τk being the time for synchronization k and 0 < α < 1.
The decreasing dynamic threshold is natural since the map
entropy is in most cases decreasing with time.

B. Synchronization based on relative map entropy
Let us consider a synchronization scheme based on the

relative map entropy D that triggers a synchronization event
whenever the local probabilistic map differs sufficiently much
from the previously broadcasted map. Synchronization k is
carried out when

D(M(t)||M(τk−1) > ξ τk−1 < t

i.e., a synchronization is performed when the relative entropy
between the current probabilistic map and the last synchro-
nized probabilistic map is larger than a positive constant ξ.

C. Discussion
The idea behind event-triggered synchronization based on

the map entropy is that the map entropy should reflect the
amount of information in the probabilistic map. It is then
natural to expect that the map entropy decreases as a pursuer
moves around gathering more and more information about
the environment. Simulations show that this is often the case,
in particular in the earlier part of a game. However, it is
easy to construct counter examples in which the map entropy
increases at one or more times before the evader is captured;
thus in general H(M i(t)) is not a decreasing function. On
the other hand, for a static evader it is straightforward to
show that H(M i(t)) is a decreasing function. This follows
from that at each step the number of zero elements z(t) of
M i(t) is non-decreasing, while all other elements are equal
to 1/(1 − z(t)).

IV. BANDWIDTH LIMITATIONS

In order to cope with communication bandwidth limita-
tions, it is natural to send only the part of the probabilistic
map M that contains most of the information2. The idea
is to transform the map M into a new map K, denoted
reproduction probabilistic map. The map K should contain
almost all information in M but should require less bits to
be encoded. We consider a vector quantization

Q : R
nc×nc → R

nc×nc : M 7→ K = Q(M)

2In this section, the pursuer index i and the time dependence are
suppressed.

where Q defines a complete partition of the matrix M into
square sub-matrices M1, . . . ,MN of order n1, . . . , nN such
that

∑N

i=1 ni = nc. The reproduction probabilistic map K is
block partitioned correspondingly into K1, . . . ,KN with

Ki =
1

n2
i

1ni×1Mi11×ni
1ni×ni

(3)

Each element of Ki is thus given by the average of the
elements of Mi. Associated with the quantization Q, we
define a distortion measure

d(M,K) = |H(M) − H(K)|

The choice of granularity in the block partition, i.e., the order
of the sub-matrices, should be chosen such that d(M,K) is
small. This corresponds to a small loss of information in the
quantization. Trade-off between quantization granularity and
distortion is treated by the rate distortion theory [16]. An
analytical characterization of this trade-off seems to be hard
to obtain in our case. We therefore consider two heuristic
approaches.

A. Uniform quantization

For uniform quantization, the block partition of Q is such
that the order of all blocks are equal, ni = n. An illustrative
example is shown in Figure 2(a). In this case the number
of elements of K is equal to n2

c/n
2, while the number of

elements of M is n2
c .

B. Non-uniform quantization

A possible non-uniform quantization is illustrated in Fig-
ure 2(b). This corresponds to a “divide-and-conquer” scheme,
which is known as vector quantization with QuadTree
map [17]. The partition M1, . . . ,MN imposed by the quan-
tization Q is in this case carried out recursively, such that

dimM1 =
1

4
dim M

dimMi+1 =

{
dimMi, if i mod 3 = 0;
1
4 dimMi, otherwise (4)

In each recursion step, the current block is divided into four
sub-matrices. Three of them are quantized using (3), while
the remaining sub-block is partitioned into four sub-blocks,
and so on. The recursion stops when the smallest block has
reached a preassigned dimension n. Compared with uniform
quantization, one advantage of the non-uniform quantization
is the possibility of an on-line termination of the quantization
if the loss of information is too high, i.e., if the distortion
measure d(M,K) is too large. Solving the recursion (4), we
find that the number of values to transmit is in the order of
log n2

c + n2.
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Fig. 2. Vector quantization K = Q(M) of probabilistic map M .

V. SIMULATION RESULTS

Sets of hundred Monte Carlo simulations have been
performed in order to evaluate the proposed synchronization
and quantization strategies. The capture time T ∗ and
the number of synchronization instances S are used as
performance indices. Figures 3 and 4 show the results for
a game with two pursuers and one evader on a grid with
n2

c = 242 cells. Three different synchronization schemes
are compared: time-triggered, event–triggered based on
dynamic threshold, and event-triggered based on relative
map entropy. The time-triggered synchronization has a
synchronization period of ∆ = 20. We see in Figure 3 that
the capture time T ∗ is varying considerably over the set of
experiments. The mean capture time T

∗
is similar for all

synchronization schemes as indicated by the dashed lines
(dashed-dotted lines indicate the standard deviations). The
result is collected in the following table:

Synchronization schemes T
∗

S
Time-triggered 68 3.9
Event-triggered dynamic threshold 64 2.1
Event-triggered relative map entropy 66 2.6

Note that the mean number of synchronization times
S is much smaller for the event-triggered schemes than
for the time-triggered, while the average capture time T

∗

is about the same. Hence, event-triggered synchronization
allows a more efficient utilization of the communication
channel. This fact is also illustrated in Figure 4. The main
difference between the two event-triggered schemes is
mainly the distribution of synchronization times. We see
that when using relative map entropy the pursuers tend
to communicate more regularly. This is due to that new
information is available quite regularly for the pursuers
and this information triggers the synchronization events
in this scheme. In Figure 5 the uniform and non-uniform
quantization strategies are compared. The results are for a
game with two pursuers and one evader on an environment
that consists of n2

c = 322 cells. The synchronization is
time-triggered with period ∆ = 20. The quantization map Q
has been chosen so that the dimension of the sub-matrices
Ki is n2 = 82. Figure 5 shows T ∗ for the following cases:
no quantization (n = 1), uniform quantization with n = 8
and non-uniform quantization with n = 8. The experimental
results are collected in the following table:

Quantization T
∗

d(M,K) V
Uniform (n = 1) 91 0. 1024
Uniform (n = 8) 141 0.1 16
Non-uniform (n = 8) 120 0.04 70

Here d(M,K) denotes the average distortion over all
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Fig. 3. Capture time T ∗ for hundred Monte Carlo experiments and the three
proposed synchronization schemes. The dashed line is the mean capture
times T

∗ and the dashed-dotted is line the standard deviations. The map
size is n2

c = 242.

experiments and V the average number of broadcasted
matrix elements at each synchronization. Note that V is
one to two magnitudes smaller for the quantized cases
compared to the non-quantized case. Still the mean capture
time is only about 50% larger. The uniform quantization
compared with the non-uniform quantization has quite high
average distortion d(M,K). This implies a relevant loss
of information that makes T

∗
larger in this case. On the

other hand the average number of transmitted data V is
considerably reduced.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented communication protocols
based on time-triggered and event-triggered synchronization
for a distributed pursuit–evasion game. The event-triggered
schemes were based on the entropy of the probabilistic map.
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Fig. 4. Number of synchronization instances S for the same hundred Monte
Carlo experiments as in Figure 3.

Simulations showed that by limiting the communication to
certain events, the utilization of the communication link
can be considerably improved compared to conventional
time-triggered communication with uniformly distributed
synchronization times. Two vector quantization maps were
considered in order to cope with bandwidth limitations. A
distortion measure based on the map entropy was introduced
to evaluate the compression of the probabilistic map. The
communication schemes developed in the paper can be
applied in cases when a probabilistic map has to be sent
through a network channel to a decision maker. This is
common in mobile robotics: examples include localization of
robots using occupancy grids [18], [2]. A related problem of
our current interest is optimal localization of mobile sensors,
which share a bandwidth limited communication channel.
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[12] K. J. Åström and B. M. Bernhardsson, “Comparison
of Riemann and Lebesgue sampling for first order
stochastic systems,” in IEEE Conference on Decision
and Control, 2002.

[13] H. Kopetz, “Should responsive systems be event trig-
gered or time triggered?” IEICE Transaction on Infor-
mation and Systems, no. 10, pp. 1525–1532, 1993.

[14] J. Berger, Statistical Decision Theory and Bayesian
Analysis. Springer-Verlag, Berlin, 1985.

[15] J. P. Hespanha and H. Kizilocak, “Efficient computa-
tion of dynamic probabilistic maps,” in Mediterranean
Conference on Control and Automation, 2002.

[16] T. Berger, Rate Distortion Theory. Prentice-Hall, NJ,
1970.

[17] A. Gersho and R. Gray, Vector Quantization and Data
Compression. Kluwer, 1991.

[18] H. Moravec and A. Elfes, “High resolution maps from
wide angle sonar,” in IEEE International Conference on
Robotics and Automation, 1985.


