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Abstract— A new distributed algorithm for cooperative esti-
mation of a slowly time-varying signal using a wireless sensor
network is presented. The estimate in each node is based on
a so called consensus algorithm, which weights measurements
and estimates of neighboring nodes. The algorithm is therefore
scalable with the number of network nodes. It requires only
limited information exchange between nodes and computations
in each node. The weights are locally optimized based on a
minimum variance criterion. Numerical results show that the
proposed algorithm exhibits good performance compared to
other distributed algorithms proposed in the literature.

I. INTRODUCTION

A challenge in control of autonomous agents is to use

spatially distributed information in an efficient way. It is of-

ten important to be able to track a common variable without

employing a centralized strategy, since such a strategy is vul-

nerable to node failures. A prominent example is distributed

tracking of a moving target using a wireless sensor network

(WSN). In this case, sensors have to cooperate in order

to accomplish accurate information of, e.g., target position,

velocity, clock, etc.

In recent years, several techniques for estimation using

WSNs have been proposed. These techniques rely often on

some physical characteristics of the wireless propagation, on

the communication protocols, or any physical reading related

to the signal to estimate. For example, the distance between

pairs of nodes can be estimated measuring the network

connectivity [1]. A taxonomy of methods for the location

estimation in WSNs from a signal processing perspective

is provided in [2]. In traditional synchronization algorithms,

nodes exchange data packets containing the current clock

value and synchronize using received data and knowledge

of the communication delay [3]. The propagation delay has

been also used for the estimation of the node positions [4].

It is clear that these techniques are effective only if there are

not packet losses or time-varying communication delays, if

the nodes are highly connected, and if there are not clock

drifts.

Collaboration can be suitable to overcome intrinsic lim-

itations in processing only local measurements, since mea-

surements are usually affected by noise, e.g., [5]. In fact,

exploiting samples taken from different nodes and explicitly
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taking into account the communication, it is possible to

design distributed algorithms for which nodes cooperate

to achieve better estimates. A large body of literature is

available on distributed sensor fusion. Here we limit the

discussion to some recent and relevant contributions on

consensus filters. In [6], the problem of distributed estimation

of an average by a wireless sensor network is presented.

It is assumed that nodes take a set of initial samples, and

then iteratively exchange the averages of the samples lo-

cally collected. Each node reaches asymptotically the global

average. The approach is based on a local weighted least

squares method, where the weights are derived from a fast

mixing Markov chain on a graph. In [7], a more general

approach is investigated. The authors propose the consensus

of the average of a common time-varying signal measured

by each sensor, when the signal is affected by a zero-mean

noise. A convex optimization problem is posed for which the

authors find a set of symmetric edge weights that minimize

the least mean square deviation. The same linear filter was

also considered in [8], where a faster coefficient computation

is investigated. In [9], a related consensus filter for distributed

low-pass sensor fusion has been proposed.

In this paper, we study cooperative and distributed estima-

tion algorithms using sensors nodes communicating through

wireless transmission. Specifically, the system model takes

into account time-varying signals, and we investigate how to

ensure the consensus of the estimates while minimizing the

variance of the error. We propose a distributed filter where

the nodes compute the estimates without central coordina-

tion. The filter design includes local to guarantee the global

asymptotic stability of the estimation error. Moreover, the

distributed filter is scalable with respect to the network size.

The algorithm can be applied e.g. for the position estimation,

temporal synchronization, as well as tracking of signals.

Compared to recent relevant work [6]-[9], our approach

is original because we adopt a more general model of the

filter structure, without resorting to the common heuristic

of the Laplacian associated to the communication graph.

Moreover, our approach differ from [7] and [8], since we

are interested to investigate distributed solutions, whereas in

such papers centralized algorithms are used to computed the

filter coefficients.

The paper is organized as follows. In Section II we for-

malize the problem. We also define a model of the commu-

nication network based on undirected graphs. A centralized

solution based on the minimization of the overall estimate

variance is discussed in Section III. Since a centralized solu-

tion requires a large amount of data flowing from the nodes



to a central station and back, we propose a decentralized

solution in Section IV. The detailed algorithm, correspond-

ing to the decentralized solution, and some implementation

issues are discussed in Section V. Numerical results, where

the proposed algorithm is compared with other solutions, are

reported in Section VI.

II. PROBLEM FORMULATION

Let us consider N > 1 nodes randomly distributed in the

plane. We assume that each node can measure a common

scalar signal d(t) corrupted by additive noise:

ui(t) = d(t) + vi(t) , i = 1, . . . , N ,

with t ∈ N ∪ {0} and where vi is a zero-mean Gaussian

random variable. This is a common assumption to char-

acterize the noise fluctuations, e.g., [10], [9], and can be

motivated by the central limit theorem. Defining the vectors

u(t) = (u1(t), . . . , uN (t))T and v(t) = (v1(t), . . . , vN (t))T ,

we can rewrite the previous equation as

u(t) = d(t)1 + v(t) ,

where 1 = (1, . . . , 1)T . We assume that the covariance

matrix of the random vector v(t) is Σ = σ2I , so that vi

and vj , for i 6= j, are uncorrelated.

Since the nodes are connected through a communication

network, each node has available extra data, transmitted by

the neighbors, in order to reconstruct the signal d(t). We thus

assume that a node i builds an estimate, xi(t), of the signal

d(t) as

xi(t) =
N∑

j=1

kij(t)xj(t − 1) +
N∑

j=1

hij(t)uj(t) . (II.1)

Thus each node computes an new estimate by linearly

combining its previous estimate and current measurement

with previous estimates and current measurements received

from neighbors nodes. If node i is not connected with node j,

then kij(t) = kji(t) = 0 and hij(t) = hji(t) = 0, for all

t ≥ 0. This estimation model is similar to the one proposed

in [9].

Remark 2.1: From the model (II.1) that we propose, it

is clear that one could try to design kii(t) and hii(t) so

that a single node, without exchanging data with neighbors,

is able to estimate d(t). This would have the advantage

of saving power for communication. However for a single

node it would require a longer time before achieving a good

estimate of d(t). Moreover measurements taken too close in

time, by the same node, are generally corrupted by correlated

noise

E{vi(t)vi(t − τ)} = r(τ) ,

where r(τ) is the autocorrelation function of the noise.

Measurements taken by different nodes are instead corrupted

by uncorrelated noise.

We rewrite the estimator (II.1) in a more compact way as

x(t) = K(t)x(t − 1) + H(t)u(t) (II.2)

where x(t) = (x1(t), . . . , xN (t))T , [K(t)]ij = kij(t), and

[H(t)]ij = hij(t).
It is convenient to model the communication network as an

undirected graph G = (V, E), where V = {1, . . . , N} is the

vertex set and E ⊆ V × V the edge set. Note that (i, j) ∈ E
implies that (j, i) ∈ E since the graph is undirected. The

graph G is said to be connected if there is a sequence of

edges in E that can be traversed to go from any vertex to

any other vertex. We associate to each edge (i, j) ∈ E a

time-varying weight wji(t). In general, it may hold that the

weights wij(t) and wji(t) are different. We introduce the

adjacency matrix W (t) as

[W (t)]ij =

{
wij(t) , if (j, i) ∈ E
0 , otherwise .

We say that a matrix W (t) is compatible with G, if W (t)
defines an adjacency matrix for G. We denote this by W (t) ≃
G. We interpret the matrices K(t) and H(t) of equation (II.2)

as the adjacency matrices of two weighted graphs, one

associated to the communication of estimates x(t) and the

other associated to the communication of measurements u(t).
It is convenient to introduce the neighbors of a node i as the

set Ni of all nodes that can communicate with i, namely

Ni = {j ∈ V : (j, i) ∈ E} .

We can now state the main problem of the paper. Given a

wireless sensor network modelled by a connected graph G,

find time-varying matrices K(t) and H(t), compatible with

G, such that the signal d(t) is consistently estimated and the

variance of the estimate is minimized. Moreover, the solution

should be distributed in the sense that the computation of

kij(t) and hij(t) should be performed by node i.

III. CENTRALIZED ESTIMATION

Let us assume that x(0) and u(0) are independent and

identically distributed random variables. Let us consider the

estimation error e(t) = x(t) − d(t)1 . We have

e(t) = K(t)e(t) + K(t)d(t − 1)1 + (H(t) − I)d(t)1

+ H(t)v(t) .

Let us assume that d(t) = d(t − 1) + δ(t) where |δ(t)| <
δ ≪ 1, taking the expected value with respect to the noise

v(t), we obtain

E e(t) = K(t)E e(t − 1) + (K(t) + H(t) − I)1 d(t − 1)

+ (H(t) − I)δ(t)1 . (III.1)

Under the assumption that δ(t) is not known, the convergence

of E e(t) to zero is guaranteed if γmax(K(t)) < 1 for1 all

t, and if the matrices K(t) and H(t) fulfill

(K(t) + H(t))1 = 1 (III.2)

H(t)1 = 1 . (III.3)

Under this conditions, it is possible to show that the filter is

unbiased and the minimum variance is achieved with K(t) =

1With γmax(A) we denote the largest singular value of the matrix A.



0 and with H(t) such that

hij(t) = hji(t) =






1

|Ni|
if j ∈ Ni

0 otherwise .

In order to take advantage of previous estimates we need to

relax the condition on the bias. Consequently, we have to

tradeoff the bias for the variance reduction, as for example

discussed [11]. We then remove the condition on the matrix

H(t) in (III.3). It can be shown that if the signal is slowing

varying, as assumed, then the bias is negligible.

The degree of freedom in the choice of K(t) and H(t),
can be used to minimize the variance of the estimate. For

this purpose we study how the covariance matrix changes

with time. Let us assume that x(t) and u(t) are independent

random vectors. Introduce the matrix

P (t) = E (e(t) − E e(t))(e(t) − E e(t))T .

Then,

P (t) = K(t)P (t − 1)K(t)T + σ2H(t)H(t)T . (III.4)

One option now is to choose K(t) and H(t) such that P (t)
is minimized at each time instance. Hence, we have the

following optimization problem

min
K(t),H(t)

tr (K(t)P (t − 1)K(t)T ) + σ2tr (H(t)H(t)T )

(III.5)

s.t. (K(t) + H(t))1 = 1 ,

γmax(K(t)) < 1 ,

K(t) ≃ G ,

H(t) ≃ G .

This optimization problem is solved iteratively, starting with

some initial guess P (0). Notice that the objective function

is quadratic in K(t) and H(t) for a given P (t−1). The first

constraint is the linear matrix equality (III.2). The second

constraint, which ensures that the estimation error converges

to zero, can be written as a linear matrix inequality using

Schur complement [12]. The last constraints, impose struc-

ture on the matrices K(t) and H(t). They are represented

by equalities to zero of some elements of these matrices.

Although the optimization problem (III.5) could be solved

using standard numerical optimization tools, it clearly re-

quires a powerful central node collecting data, computing

new weights and dispatching them to the sensors.

Beside the typical disadvantage of a centralized solution,

which is not robust to failures, we would also have large

delays due to the propagation of the data from the farthest

nodes to the central node. Although this could be overcome

having directed paths from every node to the central node,

this would require, in general, a total power consumption

which is prohibitive for small nodes. We propose in the

following a decentralized solution where each node computes

its weights minimizing the variance of its estimate.

IV. DECENTRALIZED ESTIMATION

In order to state a decentralized optimization problem, we

need to introduce some notation.

Let Mi denote the number of neighbors of node i, i.e.,

Mi is the cardinality of Ni = {i1, . . . , iMi
}. Collect the

estimation errors available at node i in the vector ǫi(t) ∈
RMi . The elements of ǫi are ordered according to the node

indices:

ǫi(t) = (ei1(t), . . . , eiMi
(t))T , i1 < · · · < iMi

.

Similarly, we introduce vectors κi(t), ηi(t) ∈ RMi corre-

sponding to the non-zero elements of row i of the matrices

K(t) and H(t), respectively, and ordered according to node

indices. It follows from (III.4) that the variance of ei(t)can

be evaluated as

E ei(t)
2 = κT

i (t)Γi(t − 1)κi(t) + σ2ηT
i (t)ηi(t) ,

where Γi(t) = E ǫi(t)ǫi(t)
T . To minimize the variance of

the estimation error in each node, we propose that κi(t) and

ηi(t) are chosen to minimize this expression. To obtain con-

sensus and convergence as well, the following optimization

problem should be solved at each time t and in each node i:

min
κi(t),ηi(t)

κ(t)T
i Γi(t)κi(t) + σ2ηi(t)

T ηi(t) (IV.1)

s.t. (κi(t) + ηi(t))
T
1 = 1 (IV.2)

γmax(K(t)) < 1 . (IV.3)

Note, however, that the inequality constraint is global, since

K(t) depends on all κi(t), i = 1, . . . , N .

In order to make the optimization problem (IV.1) dis-

tributed we need to find conditions on the κi(t) and ηi(t)
that would guarantee that γmax(K(t)) < 1. In particular we

use the following result.

Proposition 4.1: If it holds

N∑

j=1

k2
ij(t) < 1/2 , and

N∑

j=1

|kij(t)| < 1 (IV.4)

then γmax(K(t)) < 1, for any t ≥ 0.

Proof: Since the result does not depend on t, in

order to have lighter notation, in the following we drop

the time dependence. We need to prove that if the given

inequalities hold, then γmax(K) < 1. This means that it

must hold λmax(KKT ) < 1, where with λmax(.) we denote

the maximum eigenvalue. We have that

[KKT ]ij =
∑

r

kirkjr

and in particular

[KKT ]ii =
∑

s

k2
is .

Let λ be a generic eigenvalues of KKT . Then we know,



from the Gerschgorin’s circle theorem, that

λ ∈
{

z ∈ C :

N⋃

i=1

∣∣z −
∑

s

k2
is

∣∣ ≤
∑

j 6=i

|
∑

s

kiskjs|

≤
∑

j 6=i

∑

s

|kis| |kjs|
}

.

If we now consider the following sum we have that

(
∑

s

|kis|
)2

=
∑

s

k2
is +

∑

s

∑

s 6=ℓ

|kis| |kiℓ| .

Since (
∑

s |kis|)2 < 1 by hypothesis then we have that
∑

s

∑

s 6=ℓ

|kis| |kiℓ| < 1 −
∑

s

k2
is ,

and that

λ ∈
{

z ∈ C :
N⋃

i=1

∣∣z −
∑

s

k2
is

∣∣ < 1 −
∑

s

k2
is

}
.

Since, by hypothesis,
∑

s k2
is < 1/2, we easily conclude that

|λ| < 1, and thus we have the sought results.

Remark 4.2: Notice that the bounds previous are quite

conservative since Gerschgorin’s bounds are in general not

tight.

From the definition of κi(t) and ηi(t) it follows that the two

inequalities (IV.4) are equivalent to

Mi∑

j=1

κ2
ij

(t) < 1/2 , and

Mi∑

j=1

|κij
(t)| < 1

since the other N − Mi coefficient are zero. Let us define

the following set

Θi =




(θ1, . . . , θMi
) :

Mi∑

j=1

θ2
j <

1

2
∧

Mi∑

j=1

|θj | < 1




 .

(IV.5)

It is not difficult to see that the set Θ is convex. We can

then rewrite (IV.1) as the following problem, where all the

variable to be optimized are local for node i

min
κi(t),ηi(t)

κi(t)
T Γi(t − 1)κi(t) + σ2ηi(t)

T ηi(t) (IV.6)

s.t.
(
κi(t)

T + ηi(t)
T
)
1 = 1

κi(t) ∈ Θ

Notice that the problem is quadratic in κi(t) and ηi(t)
for a given Γi(t − 1), with one linear constraint and a

nonlinear constraint. Since the cost function of the primal

optimization problem (IV.6) is convex in Θ, the constraint

(κi(t)
T + ηi(t)

T )1 = 1 is linear in κi(t) and ηi(t), and if

we assume the solution is in the set Θ, then strong duality

follows [13]. The problem can then be transform in its dual.

Let us consider the Lagrangian

L(η, κi(t), ηi(t)) = κi(t)
T Γiκi(t) + σ2ηi(t)

T ηi(t)(t)

+ ζ((κi(t)
T + ηi(t)

T )1 − 1)

where ζ ∈ R is a Lagrangian multiplier. We introduce the

dual function

g(η) = inf
κi(t),ηi(t)

L(ζ, κi(t), ηi(t)) ,

and the dual optimization problem becomes

max
ζ

g(ζ) .

In particular we obtain that

κi(t) = −ζΓi(t − 1)−1 1

2
(IV.7)

ηi(t) = − ζ 1

2σ2
. (IV.8)

We then minimize the dual optimization function g(ζ) with

respect to ζ. Simple algebraic calculations yield the optimal

values

κi(t) =
Γi(t − 1)−1 1

σ−2Mi + 1 T Γi(t − 1)−1 1

ηi(t) =
1

Mi + σ2 1 T Γi(t − 1)−1 1
.

which are the optimal weights for each sensor, for a given

Γi(t − 1). We should now show that these optimal weights

are feasible for the problem (IV.6), which corresponds to

prove that the solution belong to the set Θ defined in (IV.5).

This so far has not been shown formally, however extensive

simulations show that the obtained solution is feasible.

As we have pointed out before the optimal weights κi(t)
and ηi(t) depend on the covariance matrix Γi(t − 1). Since

each node receives measurements and estimates from the

neighbors, it is possible to compute, or estimate, the covari-

ance matrix Γi(t − 1) at each time step.

V. IMPLEMENTATION ISSUES

Let us discuss the estimation algorithm in detail. The

implementation of the consensus algorithm is shown as

Algorithm 1. First, each sensor initializes the local mean

estimation error m̂ǫ = 0 (see line 2) and its local covariance

matrix estimate with the noise covariance, i.e. Γ̂i(0) = σ2I
(see line 2 in the algorithm), where we remark that we are

using the “hat” since this are sample estimates of the real

mean and covariance of the error. The optimal weights are

computed using the equations (IV.8) (lines 8 and 9). In line

10 we compute the optimal estimate. Lines from 12 to 26

implement the covariance update based on the available data.

In order to compute m̂ǫ and Γ̂i(t), an estimate of the

estimation error needs to be computed. This is done com-

puting an average between the current available estimates

and measurements (see line 18). As an estimate of d(t)
we cannot use directly x(t) since it is biased and we can

underestimate the actual error. On the other hand, using only

measurement is also not a good choice, since their noise



variance is very high. A good heuristic is the one proposed,

where we combine low variance slightly biased estimates and

unbiased measurements corrupted noises with high variance.

In particular the mean and covariance matrix are estimated

Algorithm 1 Estimation algorithm for node i

1. t := 0
2. m̂ǫ := 0
3. Γ̂i(0) := σ2I
4. xi(0) := ui(0)
5. while forever do

6. Mi := |Ni|
7. t := t + 1

8. κi(t) :=
Γ̂i(t − 1)−1 1

σ−2Mi + 1 T Γ̂i(t − 1)−1 1

9. ηi(t) :=
1

Mi + σ2 1 T Γ̂i(t)−1 1

10. xi(t) :=
∑

j∈Ni
κij

(t)xj(t − 1) + ηij
(t)uj(t)

11. d̂ := 0
12. if t ≤ 2 then

13. for j ∈ Ni do

14. d̂ := d̂ +
uj(t)

Mi
15. end for

16. else

17. for j ∈ Ni do

18. d̂ := d̂ +
xj(t) + uj(t)

2Mi
19. end for

20. end if

21. for j ∈ Ni do

22. eij
(t) := xj(t) − d̂

23. end for

24. ǫi := {ei1 , . . . , eiMi
}

25. m̂ǫi
(t) :=

t − 1

t
m̂ǫi

(t − 1) +
1

t
ǫi(t)

26. Γ̂i(t) :=
t − 1

t
Γ̂i(t − 1) +

1

t
(ǫi(t) − m̂ǫi

(t))(ǫi(t) −
m̂ǫi

(t))T

27. end while

from the samples as shown on line 25 and 26.

In the algorithm, the inversion of the covariance matrix

should be computed. This is not a difficult operation in

resource constrained sensor networks, since each node has

generally a rather limited number of neighbors, and thus the

size of the matrix Γ̂i is small.

Note that the algorithm is implemented under the assump-

tion that each node is able to compute and communicate data

within the sampling instance.

VI. NUMERICAL RESULTS

Numerical simulations have been carried out to compare

the proposed algorithm with other possible approaches.

Specifically, the proposed algorithm is compared with two

other algorithms, one we called arithmetic mean estimator,

namely such that

kij(t) = hij(t) =






1

2 |Ni|
if j ∈ Ni

0 otherwise .

The other one is based on the Laplacian matrix [14], which

is normalized in order to obtain a stable filter. We will called

such estimator Laplacian based estimator, and it is defined

as

kij(t) = hij(t) =






1 − |Ni|
maxi |Ni|

if i = j

|Ni|
maxi |Ni|

if j ∈ Ni

0 otherwise .

Two random generated networks have been considered. The

first is shown in Figure 1(a), with N = 15 nodes, and the

second with N = 150 nodes is reported in Figure 1(b). The

signal to be tracked is d(t) = 3 sin(2πt/780)−cos(2πt/620)
with a noise normally distributed around d(t) with variance

σ2 = 1.2. The network is generated with sensors randomly

distributed in a squared area of side N/2. Two nodes are

connected if and only if their relative distance is less than

1.5
√

N .

For the two network cases, all the N realizations are

shown in Figure 1(c) and Figure 1(d). The first plot of the

two figures shows the signal corrupted by noise, and the

second refers the the realization for the arithmetic mean

based estimator, the third to the Laplacian based, and the last

refers to the proposed algorithm. In particular, it is possible

to appreciate, visually, the improvements due to the solution

proposed.

In the following table are collected the standard deviation

of the mean square errors.

Estimator Std. dev. MSE Std. dev. MSE

N = 15 N = 150
Arithmetic mean 0.296 0.209

Laplacian based 0.350 0.356

Decentralized 0.175 0.132

In the first case our algorithm yields and improvement of

about 40% and of about 37% in the second case, with respect

to the arithmetic mean estimator and of about 50% and of

about 63% compared with the Laplacian based estimator.

VII. CONCLUSIONS

In this paper, we have presented a decentralized coopera-

tive estimation algorithm for the estimation of time-varying

signal using a wireless sensor network. Specifically, the

algorithm allows for accurate refinements of the estimates

by employing previous estimates and noisy measurements

of the signal to be estimated. We provide optimal time-

varying weights to be used in combining the information,

where the cost function is the variance of the estimate.

Numerical results shows that the proposed algorithm exhibits



(a) Random generated network with N = 15. Each
node has 3.6 neighbors, in average.

(b) Random generated network with N = 150. Each
node has 8.3 neighbors, in average.

(c) Realization of the different estimators versus time. The first plot show
the measurements. The second shows the arithmetic mean estimator, the
second the Laplacian based and the last show the proposed distributed
estimator. The noise variance is of 1.2.

(d) Realization of the different estimators versus time. The first plot show
the measurements. The second shows the arithmetic mean estimator, the
second the Laplacian based and the last show the proposed distributed
estimator. The noise variance is of 1.2.

very good performance in terms of standard deviation of the

measurement errors and that it outperforms other common

solutions.
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