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~ Abstract—A distributed adaptive algorithm to estimate a some recent and relevant contributions. In [5], the problem
time-varying signal, measured by a wireless sensor network of distributed estimation of an average by a wireless sensor
is designed and analyzed. The presence of measurement nsise nanyork is presented. It is assumed that nodes take a set of
and of packet losses is considered. Each node of the network . itial | d then i vel h h

locally computes adaptive weights that guarantee to mininze Iniial samples, an en iteratively exchange the average

the estimation error variance. Decentralized conditions o the ~ the samples collected by other nodes. The authors show that
weights, which ensure the stability of the estimates througout ~ each node reaches asymptotically the global average. In [6]
the overall network, are also considered. A theoretical pdor- g more general approach is investigated. The authors study
mance analysis of the scheme is carried out both in the presee 5 istributed average computation of a time-varying signal

of perfect and lossy links. Numerical simulations illustrae db h hen the si lis affected b
performance for various network topologies and packet loss M€asureéd by each sensor, when e signal IS affected by a

probabilities. zero-mean noise. The same linear filter was also considered
Index Terms—Distributed filtering; Wireless sensor net- in [7], where the weights are computed to speed up the time
works; Networked Embedded System. of the average computation. A related consensus filter for
distributed sensor fusion was proposed in [8], where the

. INTRODUCTION focus is on designing a distributed low pass filter. In [2],

The robustness, flexibility and reduced cost of Wireleswe extended the algorithms in [5]-[8] by designing the
Sensor Networks (WSNs) motivate the development of nefilter weights so that the variance of the estimation errors
classes of estimation algorithms, which need to be designé&dminimized. The covariance matrix estimation problem of
considering the limited computational and communicatiothis filter was considered in [3].
capabilities of such systems. Collaboration is suitable to The remainder of the paper is organized as follows: In
overcome intrinsic limitations in processing measurementection Il, the problem of adaptive distributed estimation
from only a single sensor, which often provide data wittalgorithm over WSNs is posed. In Section I, conditions
correlated data and quantization noise [1]. that guarantee the stability of the estimation errors aresn

The main contribution of this paper is a theoretical frametigated in the presence of packet losses. Such conditi@ns ar
work to the design of a collaborative distributed filter forincluded in the optimization problem studied in Section IV,
tracking a time-varying signal with a WSN. The approachvhere the filter coefficients are derived. The covariancéef t
ensures that the filter is stable and exhibits good behaviestimates is discussed in Section VI. In Section VII, numer-
with respect to packet losses. We state and solve an opal results illustrate the performance of the distribuiédr.
timization problem that provides optimal filter coefficient Finally, conclusions and future perspectives are destriive
that guarantees the stability of the estimation error even Section VIII.
presence of lossy communications. The filter design is basébtation: Given a stochastic variable we denote byE x
on new global constraints, which are different from thosés expected value. When necessary, we wlitgr to denote
adopted in the earlier work [2], [3]. that the expected value is taken with respect to the prababil

Studies on the properties of distributed algorithm are ébundensity function ofy. With || - || we denote the?-norm of
in the area of parallel computing [4]. More recently, theya vector or the spectral norm of a matrix. Given a matrix
have found renewed interest in several other research,areds we denote with?,,(A) and ¢,;(A) the minimum and
including communication networks, multi-robot coordinamaximum eigenvalue, respectively, and we refer to its ksirge
tion, and signal processing. Here we limit the discussion teingular value ag(A). Given the matrixB, we denote with

Ao B the Hadamard (element-wise) product betweeand
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of a scalar signadi(t): We will assume thab(¢) is slowly varying, so|d(t)] < A
N = Ao ; for some smallA > 0. The following results holds:
u(t) = d()1 +o(t), Proposition 3.1: Consider the system (2) and assume that:

whereu = (u1,...,un)” is the vector collecting the sensor (i) ((K(t) + H(t) — I) o ®(t))1 = 0 for any realization
measurements and = (vq,...,uy)? is vector of the ®(t) of the stochastic process(t),
additive noises. We assume th&t) ~ N(0,0%) and that (i) |§(t)] < A for all t € INy,
teNy={0,1,...}. (i) (K () < Ymax < 1 for all ¢ € INy.
We model the network as a weighted gragt) = (V,€),  Then,
whereV = {1,...,N} is the vertex set and C V x V is ) AV NAmax
the edge set. A weighting functiol : £ x Ny — R : tl}ﬁloo [E¢Eve)] < 1A

(1,7)(t) — gi;(t), which assigns a weight to each edge of  Proof: Taking the expected valuenbatx(Z), with respect
the graph. We denote the set of neighbors of node) as  to the pdf's ofv(t) and¢;;(¢) and using assumption (i), we
N;(t)={j € V:(4,7) € £}U(4,%). The nodes are supposedhave that

to transmit over wireless channels using same frequencies,

thus communication channels are symmetric [9]. This mearls ¢ Eoe(t) = (K@) 0 Q) EgEve(t —1) = 6()(K(t) o Q)1 .

that if there exists a linki, j), then there is also the link | et ys, for simplicity, defines(t) = E,E,e(t). The
(J,%)- Notice, however, that the weights are such halt) #  gynamics ofs is thus given by a deterministic time-varying
95i(t)- linear system. Let us consider the functidfs(t)) = ||s(¢)]|.

We assume each nodecomputes an estimate;(t) of Then we have that
d(t) by taking a linear combination of its own and of its

neighbors’ estimates and measurements: V(s(t) < (|K(t) o Q| = 1)V (s(t—1)) + | K(t) o P|AVN .
wi(t) =Y kij()di;(t)a;(t— 1)+ hij(t)di;(tyus(t), ~ Notice that
JEN(®) JEN(®) IK(t) o Q| = [IK(t) o pT 1T + K(t) 0 ¢I||
1) -~
_ _ = [[pK(t) + K(t) o qI|| < p [ K| + [ K(t) o ||
where k;;(t)¢:;(t) and h;;(t)¢:;(t) are weights assigned <pIIE®)| +qlE®)| = IK@®)|,

to the arc(j,¢). In particular, k;;(¢), h;;(t) € R are de-

terministic values, whereag;;(t), with i # j, are binary Wwhere we have used that for any unitarily invariant norm
random variables modelling packet losses of the link fromand for any matrixA and B, it holds that|A o B||*> <
nodej to nodei. We assume that the estimate(t — 1) ||A*A| |B*B| [10], that |[KTK||'/? = | K|, and that
and measurements;(¢) are available at node at timet, [ ¢*I||'/? = ¢. Hence, assumption (iii) gives thgt< (¢) o

so thate(t) = 1 for all t > 0. Fori # j, we assume Q| < ymax < 1. Therefore, it follows

that the random variables;;(¢) are identically distributed 1—~t

with probability mass functiorPr(¢;(t) = 1) = p, and  V(s(t)) < 1LV (st = 1)) + Ymax 2 AVN
Pr(¢;;(t) = 0) = ¢ = 1 — p, wherep € [0,1] denotes 1= Ymax

the successful packet reception probability. We also makeom where, taking the limit — oo, we get the resultm

the natural assumption that the measurement ngigeand Proposition 3.1 provides conditions under which the esti-
the random variableg;; (¢) are independent.We write (1) in mation error converges to a neighborhood of the origin.

matrix form as The estimate will thus have a bias. From the proof of the
Proposition 3.1, it is clear that the bias depends|&f(t)||,
z(t) = (K(t) o (1)) 2(t — 1) + (H() 0 2(t)) u(t) VN and A. If the signald(t) is slowly varying, A < 1,

= Kgy(t)x(t — 1) + Hyr) (H)u(t), and || K (t)|| small, then the bias will be small. An unbiased

estimate can be obtained settidg(t)1 = 0 along with

— T
wheres = (z1,...,2y)" and the conditions in Proposition (3.1). However, under this
(K ()]s, = kij(t), if j e Ni(t); supplementary condition, the minimum variance estimator
Y0, otherwise. has K (t) = 0, and each node just takes the average of the

. . ' o communicated measurements.
The matrix H(t) is defined similarly and the elements of In the next session, we will pose an optimization problem

®(t) are equal tap;;. In next section we derive conditions that allows us to distributely determine optimal weightstsu
on K(t) and H(t) that guarantee the estimation error to : AR
converge that the error variance is minimized.

IV. MINIMUM VARIANCE DISTRIBUTED ESTIMATOR

In order to design a minimum variance distributed estima-
tor, we need to consider how the error variance changes over
time. The error variance, with respect to the measurement
noise, isP(t) = E,(e(t) — E ye(t))(e(t) — E ,e(t))T, and
e(t) = Ky (t)e(t — 1) 4+ d(t)(Kg) (t) + Hyy — 1)1 its update equation is

= 0(8) Koy ()1 + Hoe(t)u(t) - @ P(t) = Ky (t)P(t — 1)KLy (1) + 02 Hyy (8) HE ) (1)

IIl. CONVERGENCE OF THE ESTIMATION ERROR

Define the estimation erref(t) = x(¢) — d(¢)1. Introduce
5(t) = d(t) — d(t — 1), so that the error dynamics can be
described as



As cost function, we consider the trace Bft), and thus i plus neighbor nodes of, at timet. The following result
the problem is to determind(,)(t) and Hy)(t) that holds (the proof is along the lines of Proposition 3.1 in J11]
minimizetr P(t) for a givenP(¢—1). Notice that the matrix Proposition 4.1: Suppose there exist;(t) > 0, i =
Ky (t) and Hy4)(t) need to fulfill constraints imposed by 1,..., N, such that

Proposition 3.1 to guarantee the convergence of the error.
Furthermore, observe that minimizing P(t) corresponds Uit) + Vi) DY\ 15(1) < Yanax (6)
to minimizing the error variance at each node. We can thus J€Oi(t)

distribute the computation among the nodes in the networ

i : It SO <i(t),i=1,...,N, theny(K(t)) < Ymax
The error variance at nodecan be written as 1”'{(”‘ = vilt), i B V(K1) <~ <

E el (t) = ki) ()" P(t — 1)ki, 1) (t) + 0% R 1) () by, 1) (t), Remark 4.1:The bound in Proposition 4.1 is rather con-

(3) servative, because no a-priori knowledge of the network
topology is used, and the proof rely on the conservative

where ki) ()" and h;, () (t)" are thei-th rows of the Gersgorin discs. Many other results bounding the eigesesal

matricesK ;) (t) and Hy()(t), respectively. of a matrix by its elements are known, e.g., [12, pag. 378—

~ Let us introduce);(t) = cardNi(t)) and let us collect 3g9] However, we have found none that provides bounds

in a vectore,(t) € RM:(®) the estimation errors available requiring only local information for a node Note also that

at node: at time¢. Assume that the nodes have a uniqu@erron-Frobenius theory cannot be applied, because we have

identifier, so that it sorts its neighbors according to thgg assumption on the sign of the elementsiaft). o
identifier, and sort the elements af(¢) accordingly: In the optimization problem (5) we can now substitute
ei(t) = (eﬁ(t),---,@z'Mi(t))T, i< <) S My the global constraint with the constraifik;||> < ;(¢)

. where ¢;(t) satisfies the set of nonlinear inequalities (6).
where M; max = max; M;(t). Consider Suitable values of/;(t) are computed in a distributed way,
2 . 7 e _ solving (6) at the equality and using the component solution
By (el]®(t) = (1)) =#i o) (OTi(E = 1)Ai o (£)+ method [4], [11]. The optimization problem (5) with the
0 ey (D1 () (£) - (4)  new constraint is similar to a Quadratically Constrained

where ¢(t) is a realization of the packet loss processQu"j‘dr"]ltIC Problem [13]. Assume the matdy: — 1) is

: ositive definite. Since alse® > 0, the cost function
[®(t)];. The vectorsk, ) (t) andn; . (t), corresponding b . L o
to the outcome of the packet loss process, are the non—zérl)(c)ll(:t) slf)lgt(i)g;\/e)éo-rl-rges %rr?gilr?m t:!?f) aijrg'tzn% st_r(lz:)t]llnierlor
elements of the vectors;_(,(t) and h; (), respectively, b , ponding 1e;(t) = i .
ordered according to the node order described above. In th' Thus Slaters condition is satisfied and strong duality

e
following, to keep a lighter notation, we considex(t) and olds [13, pag. 226]. The problem, however, does not have a
ni(t) instead ofk; () (t) andn; ) (t), respectively.

closed form solution and thus we need to rely on numerical
NS M (¢ o M () . algorithms to derive the optimat; (¢) and n;(t). We have
Thg matanlt(Et 1) e Bt d(tXtIR ] n (4)|'S the error the following proposition whose proof is in [11].
covariance matrix associated dgt — 1), namely Proposition 4.2: For a given covariance matriX; (¢t — 1),

Di(t —1) = B (e(t —1) — B (et —1))) the values ofk;(¢) andn;(¢) that minimizes (5) are given by
X (ei(t—1) — Ey(e(t —1)". it = o2(Di(t — 1) + \(t) )11 -
Note thatI';(¢ — 1) is a sub-matrix ofP(¢ — 1), obtained ' o 1T (Tt = 1) + ]/}i(t)l)flﬂ +M(t)

by puncturing fromP(¢ — 1) the rows and columns corre- ni(t) = 8)
sponding to neighbors of nodehat do not communicate at o 1T(Ti(t — 1) + N(H)I) 7ML + M;(t)

timeht. V\ée di(:] no'ijso far Iexplaiﬂ how; (t) isdcomput%d b)(/j Wi}h the optimal Lagrange multiplier \;(t) €
each node when data is lost. This issue is discussed in etﬁj 02 |/ M) — Lo (Tt — 1)),

in the next section. Previous proposition provides an interval within which the

To obtain the optimal weights; (¢) and;(t) that mini-  4htimal A, can be found. Simple search algorithms can be
mize the estimation error variance in (4), each node need§sidered to numerically solv@:?)Tx — v; for \;, such
1 1 !

to solve the following optimization problem as, for example, the bisection one [13].
min k7 (OT;(t — 1)kq(t) + onl (t)n (1) (5)

ORI V. COVARIANCE ESTIMATION
st (ki(t) +m(t)T1 =1 Since the estimator is a discrete linear time-varying sys-
VK@) <1 tem and the stochastic proces§t) and thuse(t) is not

stationary, the estimation of the error covariabh¢e) needed
The constraints comes from Proposition 3.1. The first one in Proposition 4.2 at next time step is not an easy task.
the distributed equivalent tai ;) (t) + Hy ) (t) — 1)1 = 1. However, if we consider the signals in the quasi-stationary
The second constraint is global, sinégt) depends on all sense, estimation based on samples guarantees to give good
ki(t),i =1,...,N. Fori = 1,..., N, let us define the results. It turns out that, if a quasi-stationary signalhe t
setO;(t) = {j # i : N;(t) N Ni(t) # 0}, which is the input of a BIBO time-varying linear system, then its output
collection of nodes located at two hops distance from nods also quasi-stationary [14, pag. 34] [15]. In particutapour



case the input signal is the measurement sig@gl which is In order to use bothr’(t) and u‘(t) a minimum least
(component-wise) stationary and ergodic and thus alsa-quasquare problem can be posed. However, numerical technique
stationary. This implies that alse(t) is quasi-stationary have to be used to get the optimal solution. Since this
(component-wise) since it is the output of a uniformly expois computationally expensive, we consider an alternative
nentially stable time-varying linear system. We can estimaapproach based on a regularized problem and the use of
the error covariance using the sample covariance. In orddre Generalized Cross-Validation method [16]. See [3] for
to do that, let us introduce the vectéy(t) collecting the details. Another approach could be based on the use of
estimates of the estimation error of nodeat time¢. Such stochastic least square. Unfortunately, such an approach
a vector is defined using the same rulesdgt), where the requires knowledge of the covariance matrixi6ft), which
nodes are sorted according to the identifier: is not easily available. We do not consider this approach in
the present paper.

€i(t):(éﬁ(t)a---aéiMi(t))Ta il <"'<iMi(t) Sil\'ﬁ'max' P pap
Using previous definition, the sample meain, (t) and B. Packet losses

covariance estimate df;(¢) can be computed as ) )
The computation of the average (9) and covariance ma-

. 1< . trix (10) has to take into account that packets are lost.
e, (t) = . &) ©) Indeed, if node does not receive estimates(t) from some
z:? nodej € N;(t), thené;(t) should be put to zero id;(t),
N R . . . T and the covariance matrik, () is filled with zeros along
Filt) = t (&(8) = e, (#) (Elt) = e, (8)) (10) the jth row and;jth column. This corresponds to say that

=0

when packets are lost, statistical information associaed

whereé; (t) = z(t)—d(t), andd(t) is an unbiased estimator the estimates from the nogeare lost.

of the signal we would like to track. If node i receives estimates:;(t) from some new
Remark 5.1:There are two major issues concerning theiode; N;(t), then the corresponding (¢) should simply

computations of (9) and (10). First, an unbiased estimatse inserted in the corresponding positioneift). We put

of d(t) must be available. Indeed, biased estimate woulghax, fi(t — 1)z in the positionjj, i.e., we initialize the

lead to a non-consistent estimation of the covariance Ratrivariance of the error for the new neighbor of nade® be

Second, packet losses introduce zeros in the vegi@), the maximum variance for previous set of neighbors. This

whereas the reception of packets from nodes not connectgibice is motivated by the fact that nodes are collaborating

at the previous time instance requires an initializationhef in estimatingd(t), and their estimation error is decreasing

corresponding entries of the covariance matrix (10). and alike, as time goes on. Another possibility could be to
We approach the issue mentioned in the previous remark iifitialize T';(t);; to 0. However, such choice is a rather
the sequel. rough over approximation of the real covariance matrix, and

numerical results we have performed showed that it strongly
S _ deteriorates performance.

The problem reduces to estimait) from available data.  once the estimation of the covariance matrix has been
A node i in the network has the estimates; (f) and  ypdated according to the packet loss process describeé abov
measurements;, (¢) with i; € N;. Let2"(t) andu'(t) be gng using (9) and (10), we can extract frof(t) the
the_ collection o_f all these va_lues. From the design of thg,4trix T:(t) corresponding to the index of the neighbors
estimator described above this data set is modelled as  communicating withi. This guarantees the invertibility of

i i the estimate of the covariance matrix. Such a matrix will

z'(t) =dO)1 + £(t) +w(t), u'(t) =dE)1 +v(t), - >

®) ®) &) ®) ®) ®) ®) then be used to compute the filter coefficients (8).

A. Unbiased Covariance Estimation

where¢(t) € RM:(®) is the bias of the estimates and(t)

is zero-mean Gaussian noise modelling the variance of the

estimator. In summary, nodé has available2M;(t) data VI. PERFORMANCE ANALYSIS

values in which half of the data are corrupted by a small

biased terng(¢) and a low variance noise(t) and the other

\r/]::l;;gg'rrupted by zero-mean Gaussian neigg with high terms of its vgriance. Given the optimal weightg(t) and
It is clear that using only.(¢) to estimated(t) we can mi(t) for rpdez, we have the following results:

obtain an unbiased estimate @ft), however its covariance ~ Proposition 6.1:For any; > 0 and for any packet loss

is rather large sincel;(t) is typically small. Using only realizationy(t) € &(t), the optimal value of:;(t) and;(t)

measurements we then over-estimate the error covariadce &€ Such that the error variance at nacsatisfies

this results in poor performance. On the other hand using

2%(t) only determines an under-estimate of the covariance, E (2[8(t)) = o)) < o

which rapidly makes the weightsg (¢) vanish. In this case ! - M)

the signal measurements are discarded and thus tracking Proof: The variance at each time instance is given by

becomes impossible. equation (4). Using the optimal values in the error variance

It is interesting to understand the filter performance in

2




we have expectation over a positive distribution, thus the signhaf t

o2 argument is maintained [12, pag. 392]. From the assumption

E (e7|®(t)) =¢(t)) = ML) T oP T (T 1) D11 hatlar (T o (t = 1) + AiT) < o, it follows

B ot (Tt — 1)+ D) 21 . . 171,

(My(8) + 017 (Ta(t — 1) + M()]) 1) Ly (T + 6D s 2 =5

< o? Using previous inequality in (13), we have

— M;(t) + o201 T(Ty(t — 1) + M (D)D)~ o2
SinceT;(t — 1) = 0 and \; > 0, then 17(T;(t — 1) + EyEoe < E¢2]1T]1¢'
AiI)~*1 > 0. Thus the proposition follows. [ ] ¢

Notice that previous proposition guarantees that the estimThe random variablé} 1 = S Mimax .. is binomial with

tion error at each time¢, and in each node, is always upper-parametep, thus the right hand side of previous inequality
bounded by the variance of the estimator that just takes tligethe first negative moment of a binomial random variable,
averages of the\/;(t) entries ofu,(t). If we assume that which can be computed as in [17, pag. 432, eq. 3.4],
(i (T(t—1)+ X (t)I) < o? then we can improve the bound obtaining the sought resuilt. [ |

in Proposition 6.1. This assumption is hard to prove forgnallNotice that forq¢ = 0, namely no packet errors and with
because the matrik(¢ — 1) is estimated in a rather involved the assumption that the error covariance estimate is baljnde
way, as we described in Section V, and also because previous Proposition allow us to refine the bound obtained in
is computed numerically. However, numerical simulationsProposition 6.1, where no hypothesis on the error covagianc
which we do not report due to space limitations, show thathere done.

such an assumption holds fere [0,0.3].

Let consider in detail the system (3). The optimal values VII. N UMERICAL RESULTS
of ki, 1)(t) andhy, (4 (1) In this section we report some numerical results with the
I _ purpose to compare our strategy with other solutions from
is(0)(t) = the literature. In particular, we considered a solutiomated
UQ(Fi¢(t)(t -1+ /\i¢(t)1)7111¢(t) E,, where the new estimate is the average between previous
o217 (T (t = 1) + Xy D)y + 17 Loy estimates and the current input. We also consider a solution
hy. () = (11) wher_e the w_elghts are computed_ba_sed on the La_lplaaan
0 (t) matrix associated to the communication graph, which we
Ly denoted withEj,p. The estimator proposed in this paper is
o215 Tiyy (t = 1) + Xy (1) " gy + 17, Loe) denoted with Eney. Simulations were carried out for two

. networks, with N = 20 and N = 35 nodes randoml
whereLyy) =1o(¢(t)i, - }\}gs(t)iiMi ‘x)T and the covari- - isyinted on an environment of siZ€/2 x N/2. Pair ofy
ance matrix’; ;) (t—1) € R¥smex R¥imex is a covariance  oges communicate only if their distance is less thefiv.
matrix that can be estimated for any packet loss process. W, signal to track is shown in the first plot of Fig. 2.
define this matrix so that its non-zero elements are theeantri  g;.,Jlations were carried out for four cases of packet
of T';(t — 1), which are corresponding to packets receiveqygses: perfect connectivity, = 0.9, p = 0.7, andp = 0.5.
Notice that under the hypothesis tha (I (t — 1) < 0%, it The nojise variance was chosen to b& — 1.5, which
holds thatt (T';, ) (£ — 1)) < o2, since this last matrix is corresponds to a high peak signal to noise ratio.

obtain from _the first_introducing pairs of zero row-columns. Time series of the estimates for our solutidiey, the
We also define the invers@', ) (t — 1) + Ai,(n1) " such  ayerage Estimato,, and the Laplaciartsp are reported
that the non-zero entries are as those of the matrixt — Fig. 2 for the cases oN — 20 andp = 0.3. The good
1)+ A:I)~", corresponding to any received packet, and ZefBenayior offye, can be clearly noticed. It can be show that it
otherwise. The\,, ;) are, for anys(t), non-negative scalars. \omains basically the same also for other scenarios of numbe
We then _hgve the following result. of nodes and packet loss.

Pr0p05|t|02n 6.2:Let assume thatla(I'i,(t — 1) + In order to compare the different solutions, we consider
Ai()I) < o7, for any ¢(t) € &(t), and that packets are y,o ayerage of the mean square estimation error over all
dropped with probability;. Then the nodes of the network, which we denote MSE. As
5 1 —gMimax g2 performance index we consider
E¢Ev€i S 1_ oM, (12)

Proof: The variance at nodeis given by (3), and the ;= MSE(E:) — MSE(Enew) ,
optimal values oft;, andh;, are as in (11). Following the MSE(E;)
same steps as in the proof of Proposition 6.1, we have that summary of the results of the simulations is shown in
o2 Fig. 1, where each curve is referred to the pair estimator-
EyEe} < Ey— ST —— - (13) network size. The performance improvement of our filter is
I3l +o ]l¢(ri¢ i, D)7 evident in any situation of packet losses. Specifically, nvhe
Previous inequality hods since the argument of the statisv = 20, averaging over different, there is an improvement
tical expectation is always positive and we are taking thef ;N;2°=52% with respect to the Average estimator and

i € {av,lap} .
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Fig. 1. Performance comparison among the different filgestrategies.
The curves refer to the three estimators, Average, Laplaaiad the one ) )
proposed in this paper for networks wiff = 20 and N = 35. Fig. ?V Vazl(l)Je ofy(K (t)) as function oft for different values ofy for the
caseN = 20.

Measurements

20

N o iy i i iliti
m%gaw fa‘a..M,:z,mmmﬂ¢WMWMMWWMMWWWa even in the presence of large packet losses probabilities.
O o e ow oo 10 1m0 o0 1600 1850 2000 Numerical results illustrate the validity of our approach.
. Average Estimato ACKNOWLEDGMENT

g My S
1OL~«» M””‘*%ﬁ S R The authors thank Prof. M. Johannson, and Prof.

5 200 400 600 800 1000 1200 1400 1600 1800 2000 B. Wahlberg for interesting and fruitful discussions.

t

1SWWWM Laplacian Estimator . REFERENCES
10 %WWWWWWWW” %"MW“WM&MW [1] A. Sawvides, W. L. Garber, R. L. Moses, and M. B. Srivaatav
s : : : o : ‘ : : - w “An analysis of error inducing parameters in multihop sensode
0 2000 400 600 800 1000 1200 1400 1600 1800 2000 localization,” IEEE Transaction on Mobile Computing, Vol. 4, Ng. 6
Proposed Estimator 2005.
ISM [2] A. Speranzon, C. Fischione, and K. H. Johansson, “listéd and
10 - WWW collaborative estimation over wireless sensor networikslh Proc. of
sl , , , | , . . . T ) IEEE CDC 2006.
0 200 400 600 8O0 1000 1200 1400 1600 1800 2000 [8] ——, “A distributed estimation algorithm for tracking ew wireless
sensor networks,” iNEEE ICC, 2007.
) ) . . [4] D. P. Bertsekas and J. N. TsitsikliBarallel and Distributed Compu-
Fig. 2. Signals representing the estimate and the measotemki(t) for tation: Numerical Methods Athena Scientific, 1997.
each of the 20 nodes in the network when= 0.3. [5] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distrtbd sensor

fusion based on average consensuis,Proc. of IEEE IPSN2005.
[6] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average census with
N=20_£Q0 . . least-mean-square deviationSubmitted to Journal of Parallel and
of about Hiap =59% with respect to the Laplacian. In the Distributed Computing2006.
case of N = 35, we obtain aﬂ’a\‘v:gS:Sl% with respect to [7] L. Xiao and S. Boyd, “Fast linear iterations for distrted averaging,”

: =35 . System Control Letter2004.
Average estimator and of abo”gp = 62% with respect [8] R. Offati-Saber and J. S. Shamma, “Consensus filters &rser

to the Laplacian. In Fig. 3 we show the value ofK (¢)) networks and distributed sensor fusiol’Proc. of IEEE CDG 2005.
for the simulation with’N = 20 nodes and for different [9] G. L. Stiiber,Priciples of Mobile Communication Kluwer Academic

values ofg. As it can be clearly seen the maximum singula Publishers, 1996.
q. y g 10] R. A. Horn and R. Mathias, “An analog of the Cauchy-Scteva

value is always belowt, thus confirming the validity of the inequality for Hadamard products and unitarily invariaotms,” SIAM
local constraint in (6) adopted to the design of the filter  J- on Mat. Anal. and Appvol. 11, no. 4, pp. 481-498, 1990.
ficient [11] A. Speranzon, C. Fischione, and K. H. Johansson, “Aridisted
coemicients. minimum variance estimator for wireless sensor networkgshool
of Electrical Engineering, KTH, Sweden, Tech. Rep., 2007.
VIIl. CONCLUSIONS [12] R.A.Hornand C. R. JohnsoMatrix Analysis Cambridge University
’ Press, 1985.
. . 13] S. Boyd and L. Vandenbergh&onvex Optimization Cambridge,
n thl_s paper, we have presente_d a de_centrallz_ed cqopeLaJ UK: c)émbridge University F(;;refsl 2004. P 9
tive estimation algorithm for tracking a time-varying s&n [14] L. Ljung, System Identification: Theory for the User (2nd Edition)
using a wireless sensor network. A mathematical framewoi ] Prentice Hall PTR, 1998.

. . . L L. Ljung and B. Walhberg, “Asymptotic properties of theast-squares
is proposed to design a filter, which is supposed to run Ipcal method for estimating transfer functions and disturbapeetsa,” Adv.

in each node of the network. As a relevant contribution, in App. Prob, vol. 24, no. 2, 1992. o

erformance analysis has been carried out including tim&dl G. H. Golub and U. Von Matt, “Tikhonov regularizationrfiarge scale
P . . y . K ith li d ? f problems,” Stanford SCCM, Stanford, Tech. Rep. 97-03, 1997
varying communication networks with Bernoulli models 0fj17) m. T. chao and W. E. Strawderman, “Negative moments aftpe
the wireless channel. Theoretical analysis shows thatlthe fi random variables,”Journal of the American Statistical Association

is stable, and the variance of the estimation error is bodinde ~ Vo!- 67, no. 388, 1972.



