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Abstract— A distributed adaptive algorithm to estimate a
time-varying signal, measured by a wireless sensor network,
is designed and analyzed. The presence of measurement noises
and of packet losses is considered. Each node of the network
locally computes adaptive weights that guarantee to minimize
the estimation error variance. Decentralized conditions on the
weights, which ensure the stability of the estimates throughout
the overall network, are also considered. A theoretical perfor-
mance analysis of the scheme is carried out both in the presence
of perfect and lossy links. Numerical simulations illustrate
performance for various network topologies and packet loss
probabilities.

Index Terms— Distributed filtering; Wireless sensor net-
works; Networked Embedded System.

I. I NTRODUCTION

The robustness, flexibility and reduced cost of Wireless
Sensor Networks (WSNs) motivate the development of new
classes of estimation algorithms, which need to be designed
considering the limited computational and communication
capabilities of such systems. Collaboration is suitable to
overcome intrinsic limitations in processing measurements
from only a single sensor, which often provide data with
correlated data and quantization noise [1].

The main contribution of this paper is a theoretical frame-
work to the design of a collaborative distributed filter for
tracking a time-varying signal with a WSN. The approach
ensures that the filter is stable and exhibits good behavior
with respect to packet losses. We state and solve an op-
timization problem that provides optimal filter coefficients
that guarantees the stability of the estimation error even in
presence of lossy communications. The filter design is based
on new global constraints, which are different from those
adopted in the earlier work [2], [3].

Studies on the properties of distributed algorithm are found
in the area of parallel computing [4]. More recently, they
have found renewed interest in several other research areas,
including communication networks, multi-robot coordina-
tion, and signal processing. Here we limit the discussion to
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some recent and relevant contributions. In [5], the problem
of distributed estimation of an average by a wireless sensor
network is presented. It is assumed that nodes take a set of
initial samples, and then iteratively exchange the averages of
the samples collected by other nodes. The authors show that
each node reaches asymptotically the global average. In [6],
a more general approach is investigated. The authors study
a distributed average computation of a time-varying signal
measured by each sensor, when the signal is affected by a
zero-mean noise. The same linear filter was also considered
in [7], where the weights are computed to speed up the time
of the average computation. A related consensus filter for
distributed sensor fusion was proposed in [8], where the
focus is on designing a distributed low pass filter. In [2],
we extended the algorithms in [5]–[8] by designing the
filter weights so that the variance of the estimation errors
is minimized. The covariance matrix estimation problem of
this filter was considered in [3].

The remainder of the paper is organized as follows: In
Section II, the problem of adaptive distributed estimation
algorithm over WSNs is posed. In Section III, conditions
that guarantee the stability of the estimation errors are inves-
tigated in the presence of packet losses. Such conditions are
included in the optimization problem studied in Section IV,
where the filter coefficients are derived. The covariance of the
estimates is discussed in Section VI. In Section VII, numer-
ical results illustrate the performance of the distributedfilter.
Finally, conclusions and future perspectives are described in
Section VIII.
Notation: Given a stochastic variablex we denote byEx
its expected value. When necessary, we writeE yx to denote
that the expected value is taken with respect to the probability
density function ofy. With ‖ · ‖ we denote theℓ2-norm of
a vector or the spectral norm of a matrix. Given a matrix
A, we denote withℓm(A) and ℓM (A) the minimum and
maximum eigenvalue, respectively, and we refer to its largest
singular value asγ(A). Given the matrixB, we denote with
A ◦B the Hadamard (element-wise) product betweenA and
B. With I and1 we denote the identity matrix and the vector
(1, . . . , 1)T , respectively.

II. PROBLEM FORMULATION

Consider a WSN withN > 1 sensors. At every time
instant, each sensor in the network takes a noisy measure



of a scalar signald(t):

u(t) = d(t)1 + v(t) ,

whereu = (u1, . . . , uN )T is the vector collecting the sensor
measurements andv = (v1, . . . , vN )T is vector of the
additive noises. We assume thatv(t) ∼ N (0, σ2I) and that
t ∈ N0 = {0, 1, . . .}.

We model the network as a weighted graphG(t) = (V , E),
whereV = {1, . . . , N} is the vertex set andE ⊆ V × V is
the edge set. A weighting functionW : E × N0 → R :
(i, j)(t) 7→ gij(t), which assigns a weight to each edge of
the graph. We denote the set of neighbors of nodei ∈ V as
Ni(t) = {j ∈ V : (j, i) ∈ E}∪(i, i). The nodes are supposed
to transmit over wireless channels using same frequencies,
thus communication channels are symmetric [9]. This means
that if there exists a link(i, j), then there is also the link
(j, i). Notice, however, that the weights are such thatgij(t) 6=
gji(t).

We assume each nodei computes an estimatexi(t) of
d(t) by taking a linear combination of its own and of its
neighbors’ estimates and measurements:

xi(t) =
∑

j∈Ni(t)

kij(t)φij(t)xj(t− 1) +
∑

j∈Ni(t)

hij(t)φij(t)ui(t) ,

(1)

where kij(t)φij(t) and hij(t)φij(t) are weights assigned
to the arc(j, i). In particular,kij(t), hij(t) ∈ R are de-
terministic values, whereasφij(t), with i 6= j, are binary
random variables modelling packet losses of the link from
node j to nodei. We assume that the estimatexi(t − 1)
and measurementsui(t) are available at nodei at time t,
so thatφii(t) = 1 for all t ≥ 0. For i 6= j, we assume
that the random variablesφij(t) are identically distributed
with probability mass functionPr(φij(t) = 1) = p, and
Pr(φij(t) = 0) = q = 1 − p, where p ∈ [0, 1] denotes
the successful packet reception probability. We also make
the natural assumption that the measurement noisev(t) and
the random variablesφij(t) are independent.We write (1) in
matrix form as

x(t) = (K(t) ◦ Φ(t))x(t − 1) + (H(t) ◦ Φ(t)) u(t)

= Kφ(t)(t)x(t− 1) +Hφ(t)(t)u(t) ,

wherex = (x1, . . . , xN )T and

[K(t)]ij =

{
kij(t), if j ∈ Ni(t);
0, otherwise.

The matrixH(t) is defined similarly and the elements of
Φ(t) are equal toφij . In next section we derive conditions
on K(t) and H(t) that guarantee the estimation error to
converge.

III. C ONVERGENCE OF THE ESTIMATION ERROR

Define the estimation errore(t) = x(t)−d(t)1. Introduce
δ(t) = d(t) − d(t − 1), so that the error dynamics can be
described as

e(t) = Kφ(t)(t)e(t− 1) + d(t)(Kφ(t)(t) +Hφ(t) − I)1

− δ(t)Kφ(t)(t)1 +Hφ(t)(t)v(t) . (2)

We will assume thatδ(t) is slowly varying, so|δ(t)| < ∆
for some small∆ > 0. The following results holds:

Proposition 3.1:Consider the system (2) and assume that:
(i) ((K(t) + H(t) − I) ◦ Φ̄(t))1 = 0 for any realization

Φ̄(t) of the stochastic processΦ(t),
(ii) |δ(t)| < ∆ for all t ∈ N0,
(iii) γ(K(t)) ≤ γmax < 1 for all t ∈ N0.
Then,

lim
t→+∞

‖E φ E ve(t)‖ ≤ ∆
√
Nγmax

1 − γmax
.

Proof: Taking the expected value of (2), with respect
to the pdf’s ofv(t) andφij(t) and using assumption (i), we
have that

E φ E ve(t) = (K(t) ◦Q)E φ E ve(t− 1) − δ(t)(K(t) ◦Q)1 .

Let us, for simplicity, defines(t) = E φ E ve(t). The
dynamics ofs is thus given by a deterministic time-varying
linear system. Let us consider the functionV (s(t)) = ‖s(t)‖.
Then we have that

V (s(t)) ≤ (‖K(t) ◦Q‖ − 1)V (s(t− 1)) + ‖K(t) ◦ P‖∆
√
N .

Notice that

‖K(t) ◦Q‖ = ‖K(t) ◦ p11T +K(t) ◦ qI‖
= ‖pK(t) +K(t) ◦ qI‖ ≤ p ‖K‖ + ‖K(t) ◦ qI‖
≤ p ‖K(t)‖ + q‖K(t)‖ = ‖K(t)‖ ,

where we have used that for any unitarily invariant norm
and for any matrixA and B, it holds that‖A ◦ B‖2 ≤
‖A∗A‖ ‖B∗B‖ [10], that ‖KTK‖1/2 = ‖K‖, and that
‖q2I‖1/2 = q. Hence, assumption (iii) gives that‖K(t) ◦
Q‖ ≤ γmax < 1. Therefore, it follows

V (s(t)) ≤ γt
maxV (s(t− 1)) + γmax

1 − γt
max

1 − γmax
∆
√
N ,

from where, taking the limitt→ +∞, we get the result.
Proposition 3.1 provides conditions under which the esti-
mation error converges to a neighborhood of the origin.
The estimate will thus have a bias. From the proof of the
Proposition 3.1, it is clear that the bias depends on‖K(t)‖,√
N and ∆. If the signald(t) is slowly varying,∆ ≪ 1,

and‖K(t)‖ small, then the bias will be small. An unbiased
estimate can be obtained settingK(t)1 = 0 along with
the conditions in Proposition (3.1). However, under this
supplementary condition, the minimum variance estimator
hasK(t) = 0, and each node just takes the average of the
communicated measurements.

In the next session, we will pose an optimization problem
that allows us to distributely determine optimal weights such
that the error variance is minimized.

IV. M INIMUM VARIANCE DISTRIBUTED ESTIMATOR

In order to design a minimum variance distributed estima-
tor, we need to consider how the error variance changes over
time. The error variance, with respect to the measurement
noise, isP (t) = E v(e(t)− E ve(t))(e(t)− E ve(t))

T , and
its update equation is

P (t) = Kφ(t)(t)P (t− 1)KT
φ(t)(t) + σ2Hφ(t)(t)H

T
φ(t)(t) .



As cost function, we consider the trace ofP (t), and thus
the problem is to determineKφ(t)(t) and Hφ(t)(t) that
minimizetrP (t) for a givenP (t−1). Notice that the matrix
Kφ(t)(t) andHφ(t)(t) need to fulfill constraints imposed by
Proposition 3.1 to guarantee the convergence of the error.
Furthermore, observe that minimizingtrP (t) corresponds
to minimizing the error variance at each node. We can thus
distribute the computation among the nodes in the network.

The error variance at nodei can be written as

E ve
2
i (t) = kiφ(t)(t)

TP (t− 1)kiφ(t)(t) + σ2hiφ(t)(t)
Thiφ(t)(t) ,

(3)

where kiφ(t)(t)
T and hiφ(t)(t)

T are the i-th rows of the
matricesKφ(t)(t) andHφ(t)(t), respectively.

Let us introduceMi(t) = card(Ni(t)) and let us collect
in a vectorǫi(t) ∈ R

Mi(t) the estimation errors available
at nodei at time t. Assume that the nodes have a unique
identifier, so that it sorts its neighbors according to the
identifier, and sort the elements ofǫi(t) accordingly:

ǫi(t) = (ei1(t), . . . , eiMi(t)
)T , i1 < · · · < iMi(t) ≤ iMi max ,

whereMi max = maxtMi(t). Consider

E v(e2i |Φ(t) = ϕ(t)) =κT
i ϕ(t)(t)Γi(t− 1)κi ϕ(t)(t)+

σ2ηT
i ϕ(t)(t)ηi ϕ(t)(t) . (4)

where ϕ(t) is a realization of the packet loss process
[Φ(t)]i. The vectorsκi ϕ(t)(t) and ηi ϕ(t)(t), corresponding
to the outcome of the packet loss process, are the non-zero
elements of the vectorskiϕ(t)(t) andhiϕ(t)(t), respectively,
ordered according to the node order described above. In the
following, to keep a lighter notation, we considerκi(t) and
ηi(t) instead ofκiϕ(t)(t) andηiϕ(t)(t), respectively.

The matrixΓi(t−1) ∈ R
Mi(t)×R

Mi(t) in (4) is the error
covariance matrix associated toǫi(t− 1), namely

Γi(t− 1) = E v(ǫi(t− 1) − E v(ǫi(t− 1)))

× (ǫi(t− 1) − E v(ǫi(t− 1)))T .

Note thatΓi(t − 1) is a sub-matrix ofP (t − 1), obtained
by puncturing fromP (t − 1) the rows and columns corre-
sponding to neighbors of nodei that do not communicate at
time t. We did not so far explain howΓi(t) is computed by
each node when data is lost. This issue is discussed in detail
in the next section.

To obtain the optimal weightsκi(t) and ηi(t) that mini-
mize the estimation error variance in (4), each node needs
to solve the following optimization problem

min
κi(t),ηi(t)

κT
i (t)Γi(t− 1)κi(t) + σ2ηT

i (t)ηi(t) (5)

s.t. (κi(t) + ηi(t))
T
1 = 1

γ(K(t)) < 1 .

The constraints comes from Proposition 3.1. The first one is
the distributed equivalent to(Kφ(t)(t)+Hφ(t)(t)−I)1 = 1.
The second constraint is global, sinceK(t) depends on all
ki(t), i = 1, . . . , N . For i = 1, . . . , N , let us define the
set Θi(t) = {j 6= i : Nj(t) ∩ Ni(t) 6= ∅}, which is the
collection of nodes located at two hops distance from node

i plus neighbor nodes ofi, at time t. The following result
holds (the proof is along the lines of Proposition 3.1 in [11]).

Proposition 4.1:Suppose there existψi(t) > 0, i =
1, . . . , N , such that

ψi(t) +
√
ψi(t)

∑

j∈Θi(t)

√
ψj(t) ≤ γmax . (6)

If ‖κi(t)‖2 ≤ ψi(t), i = 1, . . . , N , thenγ(K(t)) ≤ γmax <
1.

Remark 4.1:The bound in Proposition 4.1 is rather con-
servative, because no a-priori knowledge of the network
topology is used, and the proof rely on the conservative
Geršgorin discs. Many other results bounding the eigenvalues
of a matrix by its elements are known, e.g., [12, pag. 378–
389]. However, we have found none that provides bounds
requiring only local information for a nodei. Note also that
Perron-Frobenius theory cannot be applied, because we have
no assumption on the sign of the elements ofK(t). ♦
In the optimization problem (5) we can now substitute
the global constraint with the constraint‖ki‖2 ≤ ψi(t)
whereψi(t) satisfies the set of nonlinear inequalities (6).
Suitable values ofψi(t) are computed in a distributed way,
solving (6) at the equality and using the component solution
method [4], [11]. The optimization problem (5) with the
new constraint is similar to a Quadratically Constrained
Quadratic Problem [13]. Assume the matrixΓ(t − 1) is
positive definite. Since alsoσ2 > 0, the cost function
in (5) is convex. The problem also admits a strict interior
point solution, corresponding toκi(t) = 0 and ηi(t)1 =
1. Thus Slater’s condition is satisfied and strong duality
holds [13, pag. 226]. The problem, however, does not have a
closed form solution and thus we need to rely on numerical
algorithms to derive the optimalκi(t) and ηi(t). We have
the following proposition whose proof is in [11].

Proposition 4.2:For a given covariance matrixΓi(t− 1),
the values ofκi(t) andηi(t) that minimizes (5) are given by

κi(t) =
σ2(Γi(t− 1) + λi(t)I)

−1
1

σ21T (Γi(t− 1) + λi(t)I)−11 +Mi(t)
, (7)

ηi(t) =
1

σ21T (Γi(t− 1) + λi(t)I)−11 +Mi(t)
, (8)

with the optimal Lagrange multiplier λi(t) ∈[
0, σ2/

√
Mi(t)ψi(t) − ℓm(Γi(t− 1))

)
.

Previous proposition provides an interval within which the
optimal λi can be found. Simple search algorithms can be
considered to numerically solve(κ∗i )

Tκ∗i − ψi for λi, such
as, for example, the bisection one [13].

V. COVARIANCE ESTIMATION

Since the estimator is a discrete linear time-varying sys-
tem and the stochastic processx(t) and thuse(t) is not
stationary, the estimation of the error covarianceΓ(t) needed
in Proposition 4.2 at next time step is not an easy task.
However, if we consider the signals in the quasi-stationary
sense, estimation based on samples guarantees to give good
results. It turns out that, if a quasi-stationary signal is the
input of a BIBO time-varying linear system, then its output
is also quasi-stationary [14, pag. 34] [15]. In particular in our



case the input signal is the measurement signalu(t) which is
(component-wise) stationary and ergodic and thus also quasi-
stationary. This implies that alsox(t) is quasi-stationary
(component-wise) since it is the output of a uniformly expo-
nentially stable time-varying linear system. We can estimate
the error covariance using the sample covariance. In order
to do that, let us introduce the vectorǫ̂i(t) collecting the
estimates of the estimation error of nodei, at time t. Such
a vector is defined using the same rules forǫi(t), where the
nodes are sorted according to the identifier:

ǫ̂i(t) = (êi1(t), . . . , êiMi(t)
)T , i1 < · · · < iMi(t) ≤ iMi max .

Using previous definition, the sample mean̂mǫi
(t) and

covariance estimate of̂Γi(t) can be computed as

m̂ǫi
(t) =

1

t

t∑

i=0

ǫ̂i(t) (9)

Γ̂i(t) =
1

t

t−1∑

i=0

(ǫ̂i(t) − m̂ǫi
(t))(ǫ̂i(t) − m̂ǫi

(t))T (10)

whereǫ̂i(t) = xi(t)− d̂(t), andd̂(t) is an unbiased estimator
of the signal we would like to track.

Remark 5.1:There are two major issues concerning the
computations of (9) and (10). First, an unbiased estimate
of d(t) must be available. Indeed, biased estimate would
lead to a non-consistent estimation of the covariance matrix.
Second, packet losses introduce zeros in the vectorǫ̂i(t),
whereas the reception of packets from nodes not connected
at the previous time instance requires an initialization ofthe
corresponding entries of the covariance matrix (10).
We approach the issue mentioned in the previous remark in
the sequel.

A. Unbiased Covariance Estimation

The problem reduces to estimatêd(t) from available data.
A node i in the network has the estimatesxij

(t) and
measurementsuij

(t) with ij ∈ Ni. Let xi(t) andui(t) be
the collection of all these values. From the design of the
estimator described above this data set is modelled as

xi(t) = d(t)1 + ξ(t) + w(t) , ui(t) = d(t)1 + v(t) ,

whereξ(t) ∈ R
Mi(t) is the bias of the estimates andw(t)

is zero-mean Gaussian noise modelling the variance of the
estimator. In summary, nodei has available2Mi(t) data
values in which half of the data are corrupted by a small
biased termξ(t) and a low variance noisew(t) and the other
half is corrupted by zero-mean Gaussian noisev(t) with high
variance.

It is clear that using onlyui(t) to estimated̂(t) we can
obtain an unbiased estimate ofd(t), however its covariance
is rather large sinceMi(t) is typically small. Using only
measurements we then over-estimate the error covariance and
this results in poor performance. On the other hand using
xi(t) only determines an under-estimate of the covariance,
which rapidly makes the weightsηi(t) vanish. In this case
the signal measurements are discarded and thus tracking
becomes impossible.

In order to use bothxi(t) and ui(t) a minimum least
square problem can be posed. However, numerical technique
have to be used to get the optimal solution. Since this
is computationally expensive, we consider an alternative
approach based on a regularized problem and the use of
the Generalized Cross-Validation method [16]. See [3] for
details. Another approach could be based on the use of
stochastic least square. Unfortunately, such an approach
requires knowledge of the covariance matrix ofxi(t), which
is not easily available. We do not consider this approach in
the present paper.

B. Packet losses

The computation of the average (9) and covariance ma-
trix (10) has to take into account that packets are lost.
Indeed, if nodei does not receive estimatesxj(t) from some
nodej ∈ Ni(t), then êj(t) should be put to zero in̂ǫi(t),
and the covariance matrix̂Γi(t) is filled with zeros along
the jth row andjth column. This corresponds to say that
when packets are lost, statistical information associatedto
the estimates from the nodej are lost.

If node i receives estimatesxj(t) from some new
nodej ∈ Ni(t), then the correspondinĝej(t) should simply
be inserted in the corresponding position inǫi(t). We put
maxk Γ̂i(t − 1)kk in the positionjj, i.e., we initialize the
variance of the error for the new neighbor of nodei to be
the maximum variance for previous set of neighbors. This
choice is motivated by the fact that nodes are collaborating
in estimatingd(t), and their estimation error is decreasing
and alike, as time goes on. Another possibility could be to
initialize Γ̂i(t)jj to σ2. However, such choice is a rather
rough over approximation of the real covariance matrix, and
numerical results we have performed showed that it strongly
deteriorates performance.

Once the estimation of the covariance matrix has been
updated according to the packet loss process described above,
and using (9) and (10), we can extract from̂Γi(t) the
matrix Γ̃i(t) corresponding to the index of the neighbors
communicating withi. This guarantees the invertibility of
the estimate of the covariance matrix. Such a matrix will
then be used to compute the filter coefficients (8).

VI. PERFORMANCE ANALYSIS

It is interesting to understand the filter performance in
terms of its variance. Given the optimal weightsκi(t) and
ηi(t) for nodei, we have the following results:

Proposition 6.1:For anyλi ≥ 0 and for any packet loss
realizationϕ(t) ∈ Φ(t), the optimal value ofκi(t) andηi(t)
are such that the error variance at nodei satisfies

E (e2i |Φ(t)) = ϕ(t)) ≤ σ2

Mi(t)
.

Proof: The variance at each time instance is given by
equation (4). Using the optimal values in the error variance



we have

E (e2i |Φ(t)) =ϕ(t)) =
σ2

Mi(t) + σ21T (Γi(t− 1) + λi(t)I)−11

− σ4λi(t)1
T (Γi(t− 1) + λiI)

−2
1

(Mi(t) + σ21T (Γi(t− 1) + λi(t)I)−11)
2

≤ σ2

Mi(t) + σ21T (Γi(t− 1) + λi(t)I)−11
.

Since Γi(t − 1) ≻ 0 and λi ≥ 0, then 1
T (Γi(t − 1) +

λiI)
−1

1 > 0. Thus the proposition follows.
Notice that previous proposition guarantees that the estima-
tion error at each timet, and in each node, is always upper-
bounded by the variance of the estimator that just takes the
averages of theMi(t) entries ofui(t). If we assume that
ℓM (Γ(t−1)+λi(t)I) ≤ σ2 then we can improve the bound
in Proposition 6.1. This assumption is hard to prove formally
because the matrixΓ(t−1) is estimated in a rather involved
way, as we described in Section V, and also becauseλi

is computed numerically. However, numerical simulations,
which we do not report due to space limitations, show that
such an assumption holds forq ∈ [0, 0.3].

Let consider in detail the system (3). The optimal values
of kiφ(t)(t) andhiφ(t)(t)

kiφ(t)(t) =

σ2(Γiφ(t)(t− 1) + λiφ(t)I)
−1

1φ(t)

σ21T
φ(t)(Γiφ(t)(t− 1) + λiφ(t)I)−11φ(t) + 1T

φ(t)1φ(t)

hiφ(t)(t) = (11)
1φ(t)

σ21T
φ(t)(Γiφ(t)(t− 1) + λiφ(t)I)−11φ(t) + 1T

φ(t)1φ(t)

where1φ(t) = 1◦(φ(t)ii1 , . . . , φ(t)iiMi max
)T and the covari-

ance matrixΓiφ(t)(t−1) ∈ R
Mi max×R

Mi max is a covariance
matrix that can be estimated for any packet loss process. We
define this matrix so that its non-zero elements are the entries
of Γi(t − 1), which are corresponding to packets received.
Notice that under the hypothesis thatℓM (Γi(t− 1)) ≤ σ2, it
holds thatℓM (Γiφ(t)(t − 1)) ≤ σ2, since this last matrix is
obtain from the first introducing pairs of zero row-columns.
We also define the inverse(Γiφ(t)(t− 1) + λiφ(t)I)

−1 such
that the non-zero entries are as those of the matrix(Γi(t−
1)+λiI)

−1, corresponding to any received packet, and zero
otherwise. Theλiφ(t) are, for anyφ(t), non-negative scalars.
We then have the following result.

Proposition 6.2:Let assume thatℓM (Γiφ(t)(t − 1) +
λi(t)I) ≤ σ2, for any φ(t) ∈ Φ(t), and that packets are
dropped with probabilityq. Then

E φ E ve
2
i ≤ 1 − qMi max

1 − q

σ2

2Mi max
. (12)

Proof: The variance at nodei is given by (3), and the
optimal values ofkiφ

andhiφ
are as in (11). Following the

same steps as in the proof of Proposition 6.1, we have that

E φ E ve
2
i ≤ E φ

σ2

1T
φ1φ + σ21T

φ (Γiφ
+ λiφ

I)−11φ
. (13)

Previous inequality hods since the argument of the statis-
tical expectation is always positive and we are taking the

expectation over a positive distribution, thus the sign of the
argument is maintained [12, pag. 392]. From the assumption
that ℓM (Γiφ(t)(t− 1) + λiI) ≤ σ2, it follows

1
T
φ (Γiφ

+ λiI)
−1

1φ ≥
1

T
φ1φ

σ2
.

Using previous inequality in (13), we have

E φ E ve
2
i ≤ E φ

σ2

21T
φ1φ

.

The random variable1T
φ1φ =

∑Mi max

ij=1 φiij
is binomial with

parameterp, thus the right hand side of previous inequality
is the first negative moment of a binomial random variable,
which can be computed as in [17, pag. 432, eq. 3.4],
obtaining the sought result.
Notice that forq = 0, namely no packet errors and with
the assumption that the error covariance estimate is bounded,
previous Proposition allow us to refine the bound obtained in
Proposition 6.1, where no hypothesis on the error covariance
where done.

VII. N UMERICAL RESULTS

In this section we report some numerical results with the
purpose to compare our strategy with other solutions from
the literature. In particular, we considered a solution, denoted
Eav, where the new estimate is the average between previous
estimates and the current input. We also consider a solution
where the weights are computed based on the Laplacian
matrix associated to the communication graph, which we
denoted withElap. The estimator proposed in this paper is
denoted withEnew. Simulations were carried out for two
networks, withN = 20 and N = 35 nodes randomly
distributed on an environment of sizeN/2 × N/2. Pair of
nodes communicate only if their distance is less than2

√
N .

The signal to track is shown in the first plot of Fig. 2.
Simulations were carried out for four cases of packet

losses: perfect connectivity,p = 0.9, p = 0.7, andp = 0.5.
The noise variance was chosen to beσ2 = 1.5, which
corresponds to a high peak signal to noise ratio.

Time series of the estimates for our solutionEnew, the
Average EstimatorEav and the LaplacianElap are reported
in Fig. 2 for the cases ofN = 20 and p = 0.3. The good
behavior ofEnew can be clearly noticed. It can be show that it
remains basically the same also for other scenarios of number
of nodes and packet loss.

In order to compare the different solutions, we consider
the average of the mean square estimation error over all
the nodes of the network, which we denote MSE. As
performance index we consider

µi =
MSE(Ei) − MSE(Enew)

MSE(Ei)
, i ∈ {av, lap} .

A summary of the results of the simulations is shown in
Fig. 1, where each curve is referred to the pair estimator-
network size. The performance improvement of our filter is
evident in any situation of packet losses. Specifically, when
N = 20, averaging over differentq, there is an improvement
of µN=20

av =52% with respect to the Average estimator and
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Fig. 1. Performance comparison among the different filtering strategies.
The curves refer to the three estimators, Average, Laplacian and the one
proposed in this paper for networks withN = 20 andN = 35.
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Fig. 2. Signals representing the estimate and the measurements ofd(t) for
each of the 20 nodes in the network whenp = 0.3.

of aboutµN=20
lap =59% with respect to the Laplacian. In the

case ofN = 35, we obtain aµN=35
av =51% with respect to

Average estimator and of aboutµN=35
lap = 62% with respect

to the Laplacian. In Fig. 3 we show the value ofγ(K(t))
for the simulation withN = 20 nodes and for different
values ofq. As it can be clearly seen the maximum singular
value is always below1, thus confirming the validity of the
local constraint in (6) adopted to the design of the filter
coefficients.

VIII. C ONCLUSIONS

In this paper, we have presented a decentralized coopera-
tive estimation algorithm for tracking a time-varying signal
using a wireless sensor network. A mathematical framework
is proposed to design a filter, which is supposed to run locally
in each node of the network. As a relevant contribution,
performance analysis has been carried out including time
varying communication networks with Bernoulli models of
the wireless channel. Theoretical analysis shows that the filter
is stable, and the variance of the estimation error is bounded
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Fig. 3. Value ofγ(K(t)) as function oft for different values ofq for the
caseN = 20.

even in the presence of large packet losses probabilities.
Numerical results illustrate the validity of our approach.
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