
A Formal Verification Approach To Revealing Stealth
Attacks on Networked Control Systems

Nikola Trčka, Mark Moulin, Shaunak Bopardikar, Alberto Speranzon
United Technologies Research Center

411 Silver Ln
East Hartford, CT

ABSTRACT
We develop methods to determine if networked control sys-
tems can be compromised by stealth attacks, and derive de-
sign strategies to secure these systems. A stealth attack is
a form of a cyber-physical attack where the adversary com-
promises the information between the plant and the con-
troller, with the intention to drive the system into a bad
state and at the same time stay undetected. We define the
discovery problem as a formal verification problem, where
generated counterexamples (if any) correspond to actual at-
tack vectors. The analysis is entirely performed in Simulink,
using Simulink Design Verifier as the verification engine. A
small case study is presented to illustrate the results, and a
branch-and-bound algorithm is proposed to perform optimal
system securing.

1. INTRODUCTION
A Cyber-Physical System (CPS) is a system consisting

of computational (i.e. cyber) components that interact with
physical entities. In this paper we focus on networked con-
trol systems, a special class of CPSs, where the main com-
ponents are sensors, actuators, and controllers, all inter-
connected through, for example, ethernet or WiFi, and op-
erating in a closed loop to maintain desired behavior of a
physical plant.

Today, networked control systems support many critical
infrastructures, like e.g. water and gas distribution and trans-
portation systems, to name a few. To ensure safe and re-
liable behavior of these systems, their security must be of
primary importance. Security analysis, or sometimes called
risk assessment, is a process that identifies and evaluates sys-
tem vulnerabilities, typically based on a system model and a
predefined set of attack models. In this paper we propose a
novel model-based security analysis technique for networked
control systems, focusing on stealth attacks, a special class
of cyber-physical attacks, where a possible adversary tries
to compromise the system while staying undetected at the
same time.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HiCoNS’14, April 15–17, 2014, Berlin, Germany.
ACM 978-1-4503-2652-0/14/04.
http://dx.doi.org/10.1145/2566468.2566484.

The mechanism of a stealth attack on a networked control
system is depicted in Figure 1. We assume that the control
and measurement signals are communicated over a network
that is either physically or only logically composed of several
secure and non-secure links. The attacker has the ability to
intercept packets that flow over the non-secure links and
replace them with arbitrary packets (or achieve the same
effect by directly compromising sensors/actuators), and is
not able to compromise any of the block components of the
system. The intention of the attacker is to guide the system
into a bad state, while at the same time making sure that
the controller does not see any irregularities in the measure-
ments (cf. Figure 1). For this paper we do not consider any
specific diagnostic procedure, but rather a general (albeit
strict) method where the measure of detectability is simply
based on the difference between the attacked and the nom-
inal measurements. Our techniques, however, can be easily
applied to other monitoring and diagnostics procedures as
well. In addition to the main detection mechanism operat-
ing in the control block, we also assume that a range check
on the actuator signal is performed at the plant.

Stealth attacks came into prominence owing to the sev-
eral recent orchestrations of attacks on CPSs such as the
Stuxnet [7], a power grid by the infamous ”Dr. Chaos” [6],
and a company’s internal heating ventilation and cooling
system [5]. In control systems literature, Smith, in [10], first
introduced and demonstrated a stealth/covert attack on a
closed-loop control system. In this scenario, the attacker can
compromise, with a judicious choice, both the input (actu-
ators) and the output (measurements) of a closed loop con-
trol system so that the it is not possible to detect the attack
from the output. Teixeira et al. [12, 11] study the problem
in the linear, yet similar, setting and provide methods to
change the system model so that a class of stealthy attacks
on the actuators gets revealed. Dan and Sandberg in [4]
consider stealth attacks on static linear systems and provide
algorithms to secure measurements that require a maximum
amount of attacker resources. Pasqualetti et al. [9] provide a
more general framework to analyze several types of attacks
on power systems and networks. In particular, general con-
ditions for attack detection and identifiability for descriptor
linear time-invariant systems are considered. More recently,
in [3], we extended the analysis for linear systems to account
for attacks on several points of a closed loop linear control
system, along with techniques to prevent stealth attacks.

Not restrictive to having a physical element, stealth at-
tacks can also be envisioned to occur on software systems
in which threads between two interacting pieces of code can

be compromised. Therefore, our goal is to design tools that
can analyze not only systems modeled as differential alge-
braic equations but can in principle also handle complex,
possibly non-linear or discrete-event systems.

Figure 1: Depiction of a stealth attack on a net-
worked control system

Formal verification [1, 2, 8] (in the context of checking
safety) is an automated technique that given an open (and
thus non-deterministic) model of a system and a desired
safety property for this system, checks whether the prop-
erty is always satisfied on the system or not. If the prop-
erty is proven false, a counterexample is usually provided,
in the form of an (external) input signal that drives the sys-
tem from its initial state to the first violation point. For
scalability reasons, the search space covering all possible be-
haviors is rarely constructed in full, and typically exists in
an implicit form only. In addition, the analysis is most of-
ten bounded in depth, i.e. performed only from time 0 to
some predefined model time T . Formal verification is very
flexible, and can in principle handle a large class of systems,
requiring only a model for which an executable semantics is
provided.

This paper proposes to use formal verification to prove
that a system is secure against stealth attacks of the form
from Figure 1. The source of non-determinism in this con-
text comes from the degrees of freedom the attacker has,
namely the network links he has access to and the packet
content he can inject, while the property to verify charac-
terizes the attack itself, namely its stealth dynamics and its
intended outcome (or goal). If the system is proven safe by
formal verification, we are sure that no stealth attacks can
exist on this system, meaning that every attack will be de-
tectable from the measurements. If it is proven insecure, the
generated counterexample directly maps to a stealth attack,
i.e. to a sequence of inputs that guarantees stealth behavior
and guides the system into a “bad” state that corresponds to
the intended attack outcome. This attack can then be an-
alyzed and, based on the gained insight, additional compo-
nents of the system are secured and the verification process

is repeated. Conceptually, the approach can be visualized
as in Figure 2.

For broader applicability, our approach is entirely imple-
mented in the Matlab/Simulink environment, the commer-
cial framework commonly used for modeling control systems.
We provide a generic Simulink template to cover a large class
of networked control systems, only requiring from users to
instantiate the system dynamics and the control logic, and
to set desired verification parameters. The actual formal
verification analysis is performed using Simulink Design Ver-
ifier [8], the verification engine of Matlab/Simulink, using its
property proving capability in particular.

Figure 2: Formal verification approach to revealing
stealth attacks

The remainder of the paper is organized as follows. In the
next section we give some preliminaries. Section 3 intro-
duces the notions of stealth attack and system security. In
Section 4, we study three special cases of stealth attacks in
more detail. The formal verification approach to system se-
curity is explained in Section 5. Section 6 shows a small case
study to illustrate the formal verification approach. In Sec-
tion 7 we cover the system design problem by presenting an
algorithm for optimal system securing. Finally, in Section 8
we give conclusions and directions for future work.

2. PRELIMINARIES
N denotes the set of natural numbers, including zero, and

N+ = N \ {0}. R is the set of real numbers, and R>0 is the
set of non-negative reals. Rm×n, for m,n ∈ N+, is the set of
all real matrices of dimension m×n. We define Rn = Rn×1.
℘(A) denotes the power set of a set A. Given a function f ,
we write dom(f) and range(f) for the domain and the range
of f respectively.

3. SYSTEM UNDER STEALTH ATTACK
We consider a closed-loop discrete time dynamical system

(P,Q, C) described by the equations in Figure 3, where for
every time instant k ∈ N, the vector xk ∈ Rn denotes the
state of the system, yk ∈ Rm is the measurement vector,
uk ∈ Rp is the control input vector, P : Rn×Rp → Rn is the
plant dynamics function, Q : Rn → Rm is the measurement
function, and C : Rm → Rp is the control (law) function.
We call (P,Q) the plant, and (P,Q, C, x0) is the initialized
system from some initial state x0 ∈ Rn.

Given an initialized system (P,Q, C, x0), we define the set
of all reachable states of (P,Q, C, x0) by reach(P,Q, C, x0) =
{x0, x1, x2, . . .}. This notion is generalized to an arbi-
trary initial set X0 ⊆ Rn by defining reach(P,Q, C, X0) =⋃

x0∈X0
reach(P,Q, C, x0).

Figure 3: Discrete-time dynamical system

a)

b)

Figure 4: a) Nominal system with signal decomposi-
tion, and b) the same system under a stealth attack

3.1 Signal partitioning and attacked system
To formalize the notion of stealth attack, we first divide

the measurement and the control vector into their non-
secure and secure parts. In other words, we assume that
uk has a block vector form (uns

k us
k)T, where uns

k ∈ Rpns ,
us
k ∈ Rps and pns + ps = p for some pns, ps ∈ N+, and sim-

ilarly that yk = (ynsk ysk)T with ynsk ∈ Rmns , ysk ∈ Rms and
mns +ms = m for some mns,ms ∈ N+. Given a set of mea-
surement and control vectors V , we write V ns for the set
of vectors containing only the non-secure parts of the vec-
tors in V , and similarly for the secure case. Given a matrix
M ∈ Rm×p, the matrix Mns,s ∈ Rmns×ps denotes the block
of M that corresponds to the non-secure part of yk and the
secure part of uk. Similarly, we define Mns,ns ∈ Rmns×pns ,
M s,ns ∈ Rms×pns and M s,s ∈ Rms×ps .

Figure 4a shows the nominal system from Figure 3 with
the measurement and the control vectors decomposed into
their secure and non-secure parts. Figure 4b shows the dy-
namics of this system when it is under attack. At every
time instant k, the non-secure part of the input is replaced
by some vector αk ∈ Rpns , called the attack-intention vec-
tor, that is used to directly control the system towards the
intended bad state, while at the same time the non-secure
part of the measurements is replaced by a masking vector
βk ∈ Rmns to hide the effect of intention vectors from pre-
vious steps and possibly manipulate the controller into pro-
ducing an incorrect command. Given this, we define the
notion of stealth attack as follows.

Definition 1 (Stealth attack). Let ε ∈ R>0 and
Π ⊆ Rn × N. A pair of sequences α0, . . . , αK ∈ Rpns and
β0, . . . , βK ∈ Rmns , for K ∈ N, is called a (Π, ε)-(stealth)

attack on an initialized system (P,Q, C, x0) if the following
holds:

1. αk ∈ range(C)ns and βk ∈ range(Q)ns for every k ∈
[0,K] - every injected signal is in the acceptable (i.e.
nominal) range,

2. (xaK ,K) ∈ Π - the last state of the attack is according
to the given relation Π,

3. ‖ yk − yak ‖≤ ε for every k ∈ [0,K] - attack is unde-
tectable (up to the given ε and the norm function) on
the measurements, and

4. αk 6= uns
k for at least one k ∈ [0,K] - attack is not

trivial (this condition is of importance only if Π does
not involve system state; see next section).

We call K the length of the attack, Π the attack intention
property (representing the “bad state” condition in terms of
state value and time stamp) and ε the detectability thresh-
old (representing the sensitivity of the potential monitoring
facility in the controller).

We now define what it means for a dynamical system and
its plant to be considered secure, modulo some detectability
threshold and an attack intention property. Intuitively, a
system is secure from some initial state if it cannot be at-
tacked from that state. This definition further extends to a
class of initial states by requiring security property for each
element of the class. Finally, a plant is considered secure
if no matter what control algorithm is attached to it, the
corresponding system is secure.

Definition 2 (Secure system). Given ε ∈ R>0 and
Π ⊆ Rn × N, an initialized system (P,Q, C, x0) is (Π, ε)-
secure if there exists no (Π, ε) attack on (P,Q, C, x0). Given
a non-empty set X0 ⊆ Rn, the system (P,Q, C) is (Π, ε,X0)-
secure if (P,Q, C, x0) is (Π, ε)-secure for every x0 ∈ X0. The
plant structure (P,Q) is (Π, ε,X0)-secure if the correspond-
ing system structure (P,Q, C) is (Π, ε,X0)-secure for every
control law function C.

4. SPECIAL CASES
In this section we identify certain special classes of stealth

attacks. These special cases are interesting as they often
arise in practice, and can accelerate the formal verification
approach by reducing complexity or even enable efficient
analytic/closed-form solutions.

4.1 Case 1: Equality of measurement signals
The first case is the singular case where ε = 0 and the

norm function is the entry-wise absolute value. In this case
the attacker can only form the masking signal by taking βk =
ynsk for every k ∈ [0,K], which simplifies the undetectability
requirement in Definition 1 to:

• ysk = ya,sk for every k ∈ [0,K] - attack is undetectable
on the secure part of the measurements (and thus com-
pletely).

Given this and the fact that the attacked control signal
would now always be equal to the nominal signal, the at-
tack can be depicted as in Figure 5. The benefit of this
simplification is that it eliminates one degree of freedom the

Figure 5: System under a stealth attack for the spe-
cial case of ε = 0

attacker has, drastically reducing the search space that for-
mal verification needs to explore. It is important to note,
however, that in this case the corresponding security anal-
ysis would not capture attacks that e.g. take advantage of
system noise to achieve the stealth property.

4.2 Case 2: State-independent attack inten-
tion property

Another special case to consider is when Π
def≡ ΠK = Rn×

{K} for someK ∈ N, i.e. when the attack intention property
is trivial on the attack state condition, but holds only at time
K. This case is relevant when we want to secure our system
for all possible stealth attacks of length K, irrespective of
their intentions that regard system state. In this case the
following result naturally follows:

Theorem 1. Let X0 ⊆ Rn be such that
reach(P,Q, C, X0) ⊆ X0, i.e. a set of system states
closed under reachability. If there exists a one-step attack
(Π1, ε) from every x0 ∈ X0, then there is also a K-step
attack (ΠK , ε) (for any K ∈ N) from every such x0. More
importantly, if the system (P,Q, C) is proven (Π1, ε,X0)-
secure, then there is no state from which it can be attacked
(for any attack length).

4.3 Case 3: Linear system case
We now consider the important case when the system un-

der consideration has linear dynamics. The purpose of this
is to clarify the definitions of the previous section; for a more
thorough treatment of the stealth attack prevention problem
in the linear setting, please see [3].

Central to this section is the following theorem that gives
a convenient matrix rank condition for system security when
the system is linear and in addition satisfies the requirements
of Case 1 and Case 2.

Theorem 2. Let (P,Q, C) be a system where P (xk, uk) ≡
Axk +Buk and Q(xk) ≡ Cxk for some matrices A ∈ Rn×n,
B ∈ Rn×p and C ∈ Rm×n. Then, for every K ∈ N+ and
every x0 ∈ Rn, the initialized system (P,Q, C, x0) is (ΠK , 0)-
secure, for ΠK = Rn × {K}, iff rank([CAiB]s,ns) = pns,
where i ∈ N is the smallest index for which CAiB 6= 0.

Proof. The proof is based on the unfolding of the
third condition in Definition 1. First, for k = 0, we have
[Cx0]s = [Cxa0]s which always holds because xa0 = x0. For
k = 1, we have

[Cx1]s = [Cxa1]s

iff

[
C

(
Ax0 +B

(
uns
0

us
0

))]s
=

[
C

(
Ax0 +B

(
α0

us
0

))]s
iff [CAx0]s + [CB]s,nsuns

0 + [CB]s,sus
0

= [CAx0]s + [CB]s,nsα0 + [CB]s,sus
0

iff [CB]s,ns(uns
0 − α0) = 0.

Further, for k = 2, we derive

[Cx2]s = [Cxa2]s

iff

[
C

(
Ax1 +B

(
uns
1

us
1

))]s
=

[
C

(
Ax1 +B

(
α1

us
1

))]s
iff [CAx1]s + [CB]s,nsuns

1 = [CAx1]s + [CB]s,nsα1

iff

[
CA

(
Ax0 +B

(
uns
0

us
0

))]s
+ [CB]s,nsuns

1

=

[
CA

(
Ax0 +B

(
α0

us
0

))]s
+ [CB]s,nsα1

iff [CAB]s,nsuns
0 + [CB]s,nsuns

1 = [CAB]s,nsα0[CB]s,nsα1

iff [CAB]s,ns(uns
0 − α0) + [CB]s,ns(uns

1 − α1) = 0.

Taking index i into account and extending the derivation
to k = K + i + 1, the result can be written in matrix form
as follows:

M =

[CAiB]s,ns 0 . . . 0

[CAi+1B]s,ns [CAiB]s,ns . . . 0

...
...

. . . 0

[CAi+KB]s,ns [CAi+K−1B]s,ns . . . [CAiB]s,ns

M ·

uns
0 − α0

uns
1 − α1

...
uns
K − αK

 = 0

From this it follows that a non-trivial attack of length
K does not exist iff the above matrix M has full column
rank. This is, however, only possible when [CAiB]s,ns is
full column rank, i.e. when its rank is pns. Note that the
first condition of Definition 1 can always be taken care of by
scaling.

Note that the condition in Theorem 2 does not depend
on the control law function. Therefore, in the linear case,
with Π only looking at the attack length and ε = 0, all the
notions of Definition 2 coincide.

Although this very special case allows for an analytical so-
lution and does not require the formal verification approach,
it is unfortunately not often seen in practice. Its solution ef-
ficiency, however, may potentially be exploited to guide the
verification procedure (not studied in this paper).

5. SECURITY AS A FORMAL VERIFICA-
TION PROBLEM

In this section we show how to apply formal verification to
analyze system security. As explained in the introduction,
the basic idea is to encode the negation of the attack con-
ditions from Definition 1 as a verification property, so that
when a counterexample is generated it directly maps to a
stealth attack of the shortest length. More importantly, if
no counterexample is generated, we can conclude that no
stealth attack is possible, i.e. that the system is secure. We
use Simulink to model the control system and Simulink De-
sign Verifier [8] as the formal verification engine. The overall
approach is illustrated in 6.

Figure 7 shows the generic Simulink template we use to
prove system security. Blocks Plant and Controller represent
nominal behavior, while their counterparts on the bottom
represent the attacked system with exactly the same internal

Figure 6: Using Simulink Design Verifier to discover stealth attacks (or prove their absence)

dynamics but different input signals. Initial state is modeled
as a free input block, with an assumption block that cap-
tures the desired range of initial conditions. Signals α and β
form the attack we are searching for, so they are also mod-
eled as free inputs and have associated assumption blocks to
restrict their ranges in accordance with the first condition
of Definition 1. We use Demux blocks to split control and
output signals into their secure and non-secure parts, and
Mux blocks to merge these parts back together.

The remaining three conditions of Definition 1 are cap-
tured inside the Attack Condition block. This block takes the
following signals as input: i) the difference between the nom-
inal and the attacked output (for the attack undetectability
property), ii) the attacked state (for the attack intention
property), and iii) the difference between the injected α sig-
nal and the original non-secure part of the control signal (to
ensure that the attack is not trivial). For every k ∈ [0,K]
the block outputs the joint validity of the three correspond-
ing conditions from Definition 1 and sends it to the property
block of Simulink Design Verifier for falsification. It is im-
plemented as a conjunction of the Π signal, which includes
a time counter and only operates on the last value of the
state signal, and two more signals that correspond to the
other two attack conditions that must be evaluated over the
complete trajectory. The first signal ensures that we have
the undetectability property holding along the whole tra-
jectory, while the second one ensures that at least one αk

along this trajectory is different from the part of the nomi-
nal control output it replaces. The values of the trajectory
properties for these signals are stored in their corresponding
delay blocks, with initial values 0 and 1 respectively.

Figure 8 shows how the setup simplifies drastically when
we assume the special case of a single fixed initial state and
with ε = 0. The free input blocks for the initial state and the
β signal are removed, and there is no need to replicate the
control block anymore because the controller now receives

Figure 9: Three-room temperature control system

the same input both in the nominal and the attacked case.
The only degree of freedom that now needs to be considered
in security analysis is the injection signal α on the controller
output.

We note that the models in Figures 7 and 8 are both
for the case where a specific controller is taken into consid-
eration; proving security for all possible controllers simply
means replacing the controller block in these figures by a
free input block (restricted to the same range).

6. CASE STUDY
We illustrate our approach on a small case study, a sim-

ple temperature control system depicted in Figure 9. The
plant in the system comprises of three adjoint rooms, where
the first and the third room have a cooling/heating device
in them (which can be actuated by the controller), and the
second and the third room have temperature sensors (which
can be read by the controller). The controller implements

Figure 7: Generic Simulink model template for generation of stealth attacks

Figure 8: Simulink model template for the special case 1 (ε = 0) and unique initial state

(
T1,k+1

T2,k+1

T3,k+1

)
=

(
1− c12 c12 0
c21 1− c21 − c23 c23
0 c32 1− c32

)
·

(
T1,k

T2,k

T3,k

)

+

(
1 0
0 0
0 1

)
·
(
u1,k

u2,k

)

yk =

(
y1,k
y2,k

)
=

(
0 1 0
0 0 1

)
·

(
T1,k

T2,k

T3,k

)

ui,k =

{ −0.25, yi,k ≥ Tmax

0, Tmin < yi,k < Tmax

0.25, yi,k ≤ Tmin, for i ∈ {1, 2}.

Table 1: Dynamics of the three-room temperature
control system from Figure 9

Figure 10: Nominal open-loop behavior of the three-
room temperature control system

an on/off control, i.e. it chooses to cool or heat the rooms,
or do nothing, based on two predefined set points Tmin and
Tmax. The choice to heat/cool room 1 is based on the mea-
sured temperature of room 2. The change of temperature
between the rooms is assumed to follow the discretized basic
first-order heat balance model, given in Table 1, where pos-
itive constants c12, c21, c23, c32 represent the heat transfer
coefficients between the rooms. For this paper, we assume a
symmetric scenario and set c12 = c21 = c23 = c32 = 0.01.

Figure 10 shows the nominal system behavior from state
T1 = T2 = T3 = 22 when it operates in open-loop. Constant
symmetric heating of room 1 and cooling of room 2 does
not change the temperature in room 2. Moreover the heat
transfer between rooms 1 and 3 through room 2 stabilizes
the temperatures in these rooms at the unacceptable levels
of T1 = 47 and T3 = −3. The goal of attacker is to drive
this stable system into some unacceptable state. In order to
analyze feasible scenarios of such stealth attacks, we made
several experiments changing system secure and non-secure
links, and changing the level of detectability ε.

In our first experiment, the system is initialized with val-
ues T1 = 22, T2 = 22 and T3 = 22, and we set Tmin = 21 and
Tmax = 23. We assume that the links from the controllers
to the actuators in room 1 and room 3, and the link from

Figure 11: Analysis of the three-room temperature
control system. Experiment 1: Only the link from
the sensor in room 2 is secure and ε = 0.

the sensor in room 3 to the controller, are not-secure, and
that the link from the sensor in room 2 to the controller is
secure. Further, we take ε = 0 and define Π = {(x, k) | x ∈
Rn, maxi∈[1,n]{x(i)} > 25, k ∈ [0, 20] ⊆ N}. The inten-
tion of the attacker in this case is to be completely stealth
for the maximum of 20 time units and, if physically possi-
ble, make sure that in this interval at least one room has
temperature above 25 degrees. Applying our method to this
setup we receive the results presented in Figure 11. The plot
of signal T2 is showing stealth behavior of the attack, while
the signals for T1 and T3 are showing that there is a clear
difference between the nominal T nom

1 = T nom
3 = 22 and the

attacked system state. The length of the generated attack
is 14, meaning that the system entered a bad state (where
at least one state element exceeded the given bound of 25
- in this case T3) before the bound 20 was reached. The α
and β signals indicate that the attack was executed by si-
multaneous cooling of room 1 (signal α1), heating of room
3 up to a point after which this room does not influence the
system (signal α2), and sending a fake measurement signal
(equal to nominal) to the controller.

Our second experiment is similar to the first one except
that we set ε = 1, and we assume that the link from the
controller to the actuator in room 3 is now secure. Figure 12
shows that an attack of length 14 still exists, where the
system hits a bad state in room 1 (where T1 is above 25).
In this case the attack is still based on simultaneous heating
of rooms 1 and 3. However, the cooling is not anymore
enforced directly through an actuator (which is now secure)
but through the β signal sending the fake measurement value
of Tmax = 23. Note that this attack is only possible for
detectability thresholds that are bigger or equal 23−22 = 1.

For the third experiment, we secure all components but
the actuator in room 1, and we reduce the detectability
threshold ε to 0.3. Figure 13 shows that in this case room 1
can be directly attacked through an actuator to reach level
25, while the temperature in room 2 is only deviated by 0.2
from the nominal case. According to this experiment, the
initial phase of attack can target only the room 1, while the
change of temperature in room 2 is small due to low heat

Figure 12: Analysis of the three-room temperature
control system. Experiment 2: The link from the
sensor in room 2 and the link to the actuator in
room 3 are secure, and ε = 1.

transfer constants and undetected due to the low sensitivity
of the detector (high ε).

For our final experiment, we set the detectablity threshold
back to zero and weaken Π to ΠK for some arbitrary K ∈ N.
As our plant is linear, we can now apply the matrix rank
condition from Theorem 2. We consider two cases: i) when
only the sensor in room 2 is secure (as in Experiment 1
above), and ii) when both the sensor in room 2 and the
actuator in room 3 are (as in Experiment 2). The calculation
results in i) [CB]s,ns = (0 0), [CAB]s,ns = (0.01 0.01) and
ii) [CB]s,ns = (0), [CAB]s,ns = (0.01). In the first case
[CAB]s,ns is not full column rank, meaning that the attacker
can inject non-trivial stealth behavior into the system (with
or without a real intention) for an arbitrary period of time.
In the second case [CAB]s,ns is full column rank and so this
behavior is not possible (under the given strict detectability
threshold).

7. OPTIMAL SECURE SYSTEM DESIGN
In this section we present a branch-and-bound algorithm

that traverses the space of possible secure/non-secure sys-
tem decompositions and returns a secure configuration of
the minimal cost. For the search we assume that all security
elements have a certain predefined cost. Algorithm 1 shows
the pseudo code of the algorithm, while Figure 14 depicts
the algorithm in operation.

The algorithm takes the user defined cost function as in-
put, as well as all the parameters needed for formal verifi-
cation analysis. It maintains a priority queue (lowest cost
first) of candidate configurations, where a configuration is
defined as a set of secure components (components 1 to p
correspond to actuators, while components p+1 to p+m cor-
respond to sensors). Initially, the queue contains the empty
configuration only, i.e., we first assume that all components
are not secure. When the configuration from the top of the
queue is taken, it is immediately discarded if its cost is not
lower than the cost of the current optimum final configura-
tion confmin (line 7); otherwise, it is passed to the formal
verification engine. If the verification analysis results in no

Figure 13: Analysis of the three-room temperature
control system. Experiment 3: Only the actuator in
room 1 is non-secure, and ε = 0.3.

Figure 14: Algorithm for optimal system securing -
Snapshot of operation

attack (line 15), the configuration is considered final and
the current optimum is updated. If the analysis generated
an attack (line 9), for each component used at some place
in the attack a new configuration is created containing this
component and all the components of the original configu-
ration. The new configurations are then added to the queue
based on their costs (line 13), unless they are already in the
queue. The algorithm stops when the configuration queue
becomes empty, in which case the current optimal config-
uration represents the global optimum and the solution to
the problem.

8. CONCLUSIONS
We presented a formal verification based methodology for

discovering stealth attacks on networked control systems.
The formal analysis is entirely performed in Simulink, us-
ing Simulink Design Verifier, and generates explicit attacks
vectors in case the system is found to be non secure. The
technique was demonstrated on a simple temperature con-
trol system, for different input parameters. To facilitate

Algorithm 1: Branch-and-Bound Algorithm For Opti-
mal System Securing

Input: M - Simulink model template from Figure 7
K ∈ N - time bound for verification
R>0 3 ε - observability threshold
Π ⊆ Rn × N - attack intention property
cost : [0, p+m]→ N - costs for actuator/sensor

(link) securing

1 Conf = ℘([0, p+m]) - configuration space
2 Conf 3 confmin = ⊥ - current minimum-cost

configuration (undefined initially)
3 Queue〈Conf〉 3 queue = [∅] - queue of candidate

configurations (containing empty configuration initially)

// explore queue until empty

4 while queue 6= [] do
// take first configuration and remove it from

queue

5 conf = head(queue)
6 queue = tail(queue)

// proceed with configuration only if its cost is

smaller than current minimum

7 if confmin = ⊥ ∨ cost(conf) < cost(confmin) then
// apply formal verification

8 (α, β) = FormalVerification(M,K, ε,Π, conf)
// check if an attack was discovered or not

9 if (α, β) 6= ⊥ then
// system not secure; analyze attack

signals to see what components are used

10 for i ∈ [0, p+m] \ conf do
// if actuator/sensor i is used at some

place in attack, secure it and make a

new candidate configuration

11 for k ∈ [0,K] do
12 if i ≤ p ∧ αk(i) 6= uns

k (i) ∨ i >
p ∧ βk(i− p) 6= ynsk (i− p) then

// insert based on cost (lowest

cost first)

13 insert(queue, conf ∪ {i})
14 break

15 else
// new secure configuration found; update

current minimum

16 confmin = conf

system securing, an algorithm that generates optimal secure
configurations based on a user-defined cost function was pro-
posed.

For our future work we plan to address the following chal-
lenges: i) scalability - find the right level of overapproxima-
tion for our model that would simplify the analysis and make
it more scalable, while at the same time not introduce many
spurious attacks; ii) metrics - come up with a set of metrics
to quantify the negative impact of the attack, and subse-
quently use them in cost/security tradeoff analysis; and iii)
extend analysis to other types of attacks.

9. REFERENCES
[1] A. Armin, A. Cimatti, E. Clarke, M. Fujita, and

Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In Proceedings of the

36th annual ACM/IEEE Design Automation
Conference, pages 317–320. ACM, 1999.

[2] C. Baier and J.-P. Katoen. Principles of model
checking, volume 26202649. MIT press Cambridge,
2008.

[3] S. Bopardikar and A. Speranzon. On analysis and
design of stealth-resilient control systems. In 6th
IEEE International Symposium on Resilient Control
Systems, 2013.

[4] G. Dan and H. Sandberg. Stealth attacks and
protection schemes for state estimators in power
systems. In IEEE Int. Conf. on Smart Grid
Communications, 2010.

[5] D. Goodin. Intruders hack industrial heating system
using backdoor posted online, 2012. Available online
at: http://arstechnica.com/security/2012/12/

intruders-hack-industrial-control-system

-using-backdoor-exploit/.

[6] F. W. Jr. ’Dr. Chaos’ gets seven more years in jail,
2005. Available online at: http://www.scmagazine.

com/dr-chaos-gets-seven-more-years-in-jail/

article/32757/.

[7] J. Leyden. Stuxnet ’a game changer for malware
defence’, 2010. Available online at:
http://www.theregister.co.uk/2010/10/09/

stuxnet_enisa_response/.

[8] MathWorks. Simulink Design Verifier. http:
//www.mathworks.com/products/sldesignverifier/.

[9] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack
detection and identification in cyber-physical systems.
IEEE Transaction on Automatic and Control, 2012.
Conditionally accepted.

[10] R. Smith. A decoupled feedback structure for covertly
appropriating networked control systems. In 18th
International Federation of Automatic Control World
Congress, 2011.

[11] A. Teixeira, D. Pérez, H. Sandberg, and K. Johansson.
Attack Models and Scenarios for Networked Control
Systems. In Proceedings of the 1st International
Conference on High Confidence Networked Systems,
HiCoNS ’12, pages 55–64. ACM, 2012.

[12] A. Teixeira, I. Shames, H. Sandberg, and K. H.
Johansson. Revealing Stealthy Attacks in Control
Systems. In 50th Annual Allerton Conf. on
Communication, Control and Comp., 2012.

