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Abstract. A hybrid control scheme is proposed for the stabilization of
backward driving along simple paths for a miniature vehicle composed of
a truck and a two-axle trailer. When reversing, the truck and trailer can
be modelled as an unstable nonlinear system with state and input satu-
rations. Due to these constraints the system is impossible to globally sta-
bilize with standard smooth control techniques, since some initial states
necessarily lead to that the so called jack-knife locks between the truck
and the trailer. The proposed hybrid control method, which combines
backward and forward motions, provide a global attractor to the desired
reference trajectory. The scheme has been implemented and successfully
evaluated on a radio-controlled vehicle. Results from experimental trials
are reported.

1 Introduction

Control of kinematic vehicles is an intensive research area with problems such as
trajectory tracking, motion planning, obstacle avoidance etc. For a recent survey
see [6, 5, 16]. The current paper discusses the problem of automatically reversing
the truck and trailer system shown in Figure 1. The miniaturized vehicle is a
1:16 scale of a commercial vehicle and reproduces in detail its geometry. The
vehicle is radio-controlled, has four axles, an actuated front steering, and an
actuated second axle. According to the theory of vehicle control, our system
is a general 3-trailer, because of the kingpin hitching between the second axle
and the dolly. The off-axle connection is important, since it indicates that the
system is neither differentially flat [19] nor feedback linearizable [20]. Hence,
motion planning techniques, like those based on algebraic tools [10, 25] cannot
be applied. Like a full-scale truck and trailer, our vehicle presents saturations
on the steering angle and on the two relative angles between the bodies. These
constraints, which are often overlooked in the literature, are of major concern
here. The control task is to drive the vehicle backward along a preassigned path.
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Fig. 1. Radio-controlled truck and trailer used in the experiments.

This problem is quite challenging, due to the unstable nonlinear dynamics and
the state and input constraints.

The main contribution of the paper is a new hybrid feedback control scheme
to stabilize the backward motion of the truck and trailer. It is argued that
backward driving along a given line is impossible from a generic initial condition
with a single controller. Instead we suggest a hybrid control strategy, where
three different low-level controls are applied: one for backward driving along
a line, one for backward driving along an arc of a circle, and one for forward
driving. By switching between these control strategies, it is possible to solve the
problem. The control design can be viewed as an exercise in hierarchical control
design [26] , where the control problem is divided into tasks which individually
can be solved using standard control techniques.

A hybrid control scheme for stabilizing Dubins vehicle [9] is proposed in [3].
Backward steering control for other vehicle configurations are considered in [8,
13, 15, 17, 18, 23]. For further discussion on the particular vehicle in this paper,
see [2, 1]. The outline of the paper is as follows. The model of the system is
presented in Section 2. In Section 3 the switching control scheme is presented
together with the design of the low-level controls. Analysis of the switching
controller is presented in Section 4. Experimental results are shown in Section 5.

2 Modeling

A nonlinear dynamic model for the truck and trailer vehicle is presented in this
section. Linearized versions, which will be used in the control design, are given,
and state constraints are discussed.

2.1 Nonlinear Model

A schematic picture of the truck and trailer system is shown in Figure 2. The
system consists of three links indexed 1, 2, and 3. Let (x3, y3) be the cartesian
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Fig. 2. Schematic picture of the system.

coordinates of the midpoint of the rearmost axle, θ3 the absolute orientation
angle of that axle, β2 the relative orientation angle between the dolly and the
truck body, β3 the relative orientation angle between the rearmost trailer body
and the dolly, and α the steering angle. The lengths of the body parts are denoted
L1, L2, L3, and M1, as indicated in the figure. For the miniature vehicle, we have
L1 = 0.35 m, L2 = 0.22 m, L3 = 0.53 m, and M1 = 0.12 m. The kinematics are
described by the following equations:

ẋ3 = v cosβ3 cosβ2
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where the control inputs are the steering angle (α) and the longitudinal veloc-
ity at the second axle (v). The sign of v gives the direction of motion: v > 0
corresponds to forward motion and v < 0 to backward motion. All the variables
are measurable using the sensors mounted on the system. We are interested in
stabilizing the system along simple paths such as straight lines and arcs of cir-
cles. In most cases, the position variable x3 will be neglected. Therefore, define
the configuration state p = [y3, θ3, β3, β2]

T
. The state equations can then be

written as
ṗ = v

(

A(p) + B(p, α)
)

(2)

Note that the drift is linear in the longitudinal velocity v. Since we are interested

in stabilization around paths, we may introduce the arclength ds
4
= v dt and



consider
dp

ds
=

v

|v|

(

A(p) + B(p, α)
)

From this expression, we see that only the sign of v matters. In the following,

we therefore assume that v takes value in the index set I
4
= {±1}.

2.2 Linearization Along Trajectories

The steering angle α can be controlled such that the system (1) is asymptotically
stabilized along a given trajectory. The stabilizing controller in each discrete
mode of the hybrid controller will be based on LQ control. For the purpose
of deriving these controllers, we linearize the system along straight lines and
circular arcs.

Straight line A straight line trajectory of (1) corresponds to an equilibrium
point (p, α) = (pe, αe) of (2) with pe = 0 and the steering input αe = 0.
Linearizing the system (2) around this equilibrium point yields
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(4)
The characteristic polynomial is

det (sI − vA) = s2

(

s+
v

L2

)(

s+
v

L3

)

(5)

Hence the system is stable in forward motion (v > 0), but unstable in backward
motion (v < 0). The presence of kingpin hitching (i.e. M1 6= 0) makes the
system not differentially flat (see [19]) and not feedback equivalent to chained
form. What this implies can be seen considering the linearization (3) and the
transfer function from α to y3:

C (sI − vA)
−1

v B = v3 M1
(v/M1 − s)

L1 L2 L3 det (sI − vA)
(6)

The presence of the kingpin hitching introduces zero dynamics in the system.
The zero dynamics is unstable if v > 0 and stable otherwise. When M1 = 0
the system can be transformed into a chain of integrators by applying suitable
feedback [21, 24].



Circular arc Consider the subsystem of (1) corresponding to the state p̄ =

[β3, β2]
T
and denote it as

˙̄p = v
(

Ā(p̄) + B̄(p̄, α)
)

(7)

A circular arc trajectory of (1) is then an equilibrium point (p̄e, αe) of (7), with

αe being a fixed steering angle and p̄e = [β3e, β2e]
T
being given by

β2e = arctan

(
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where r1 = L1/ tanαe, r2 =
√

r2
1 +M2
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2, and r3 =

√

r2
2 − L2

3 are the radii
of the circular trajectories of the three rear axles. Linearization of (7) around
(p̄e, αe) gives

˙̄p = v
(

Ā(p̄− p̄e) + B̄(α− αe)
)
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2.3 State and Input Constraints

An important feature of the truck and trailer vehicle is its input and the state
constraints. In particular, for the considered miniature vehicle we have the fol-
lowing limit for the steering angle

|α| ≤ αs = 0.43 rad (10)

and for the relative angles

|β2| ≤ β2s = 0.6 rad, |β3| ≤ β3s = 1.3 rad (11)

A consequence of the latter two constraints is the appearing of the so called jack-
knife configurations, which correspond to at least one of the relative angles β2 and
β3 reaching its saturation value. When the truck and trailer is this configuration,
it is not able to push anymore the trailer backwards . The states y3 and θ3 do
not present saturations. Due to limited space when maneuvering, however, it is
convenient to impose the constraints

|y3| ≤ y3s = 0.75 m, |θ3| ≤ θ3s = π/2 rad (12)

The domain of definition of p is thus given by

D = (−y3s, y3s)× (−θ3s, θ3s)× (−β3s, β3s)× (−β2s, β2s) (13)

Note that the since the steering driver of the miniature vehicle tolerates very
quick variations, we do not assume any slew rate limitations on α.
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Fig. 3. The right-hand side of equation (1d) as a function of β2 and β3 for α = ±αs. For
certain choices of (β2, β3), the input constraint on α leads to the jack-knife configuration
since for these values both β̇3 and β3 are positive. The plus and minus signs indicate the
(β2, β3) regions where β̇3 is necessarily positive and negative, respectively, regardless
of α.

3 Switching Control

The switched control strategy is presented in this section together with the low-
level controls, but first some motivation for investigating switching controls are
discussed.

3.1 Why Switching Control?

It is easy to show that due to the saturations of the input and the state, it
is not possible to globally stabilize the truck and trailer along a straight line
using only backward motion. Consider the right-hand side of equation (1d) for
v = −1, and note that β̇3 depends on β2, β3, and α. The two surfaces in Figure 3
show how β̇3 depends on β2 and β3 for the two extreme cases of the steering
angle α, i.e., α = −αs and α = αs, respectively. It follows that there are initial
states such that both β3 and β̇3 are positive, regardless of the choice of α (for
example, β2 = −β2s and β3 = β3s). Starting in such a state leads necessarily to
that the truck and trailer vehicle ends up in the jack-knife configuration, when
driving backwards. Naturally, this leads to the idea of switching the control
between backward and forward motion (as a manual driver would do). Before
we present how this switching can be done, note that even without input and
state constraints it is not possible to use the same state feedback controller in
forward and backward motion. This follows simply from that if the system (2)
with v = 1 is asymptotically stable for a smooth control law α = −K(p), then
the corresponding system with v = −1 is unstable.
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3.2 Switching Control Strategy

A simplified version of the proposed hybrid control is shown to the left in Fig-
ure 4. The hybrid automaton consists of two discrete modes: backward driving
along a straight line and forward driving. The switchings between the modes
occur when the continuous state reach certain manifolds. The control design
consists now of two steps: choosing these manifolds and determining local con-
trollers that stabilize the system in each discrete mode. Suppose a stabilizing
control law α = −KB(p) has been derived for the backward motion (v = −1) of
the system (2). Let E ⊂ D denote the largest ellipsoid contained in the region of
attraction for the closed-loop system. From the discussion in previous section,
we know that E is not the whole space D. If the initial state p(0) ∈ D is outside
E , then KB will not drive the state to the origin. As proposed by the hybrid
controller in Figure 4, we switch in that case to forward mode (v = 1) and the
control law α = −KF (p). The forward control KF is chosen such that the tra-
jectory is driven into E . When the trajectory reaches E , we switch to backward
motion. The sets C− ⊂ D and C+ ⊂ D on the edges of the hybrid automaton in
Figure 4 define the switching surfaces. To avoid chattering due to measurement
noise and to add robustness to the scheme, the switching does not take place
exactly on the surface of E . Instead C− is slightly smaller than E , and C+ is
larger than E , see the sketch to the right in Figure 4. It is reasonable to choose
C− (the set defining the switch from forward to backward mode) of the same
shape as E , but scaled with a factor ρ ∈ (0, 1). There is a trade-off in choosing
ρ: if ρ is close to one, then the system will be sensitive to disturbances; and if
ρ is small, then the convergence will be slow since the forward motion will be
very long. In the implementations we chose ρ in the interval (0.7, 0.8). The set
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C+ (defining the switch from backward to forward mode) is chosen as a rescaling
of D. In the implementation, the factors were selected as unity in the y3 and the
θ3 component, but 0.8 and 0.7 in the β2 and β3 component, respectively. The
choice is rather arbitrary. The critical point is that β2 and β3 should not get too
close to the jack-knife configuration (|β2| = β2s and |β3| = β3s). Experiments on
the miniature vehicle with the hybrid controller in Figure 4 implemented show
that time spent in the forward mode is unacceptably long. The reason is that
the time constant of θ3 is large. To speed up convergence, we introduce an inter-
mediate discrete mode which forces θ3 to recover faster. This alignment control
mode corresponds, for example, to reversing along an arc of circle. The complete
switching controller is shown in Figure 5. Thus, the hybrid automaton consists
of three discrete modes: backward driving along a straight line, backward driv-
ing along an arc of a circle, and forward driving. The switchings between the
discrete modes are defined by the following sets:

Ω = {p = [y3, θ3, β3, β2]
T ∈ D : |θ3| < θ̃3 or y3θ3 < 0}

Ψ = {p = [y3, θ3, β3, β2]
T ∈ D : |θ3| < θ̃3/2, |y3| < ỹ3}

Φ = {p = [y3, θ3, β3, β2]
T ∈ D : [0, 0, β3, β2]

T ∈ C−}

where θ̃3 and ỹ3 are positive design parameters. In the implementation we
choose θ̃3 = 0.70 rad and ỹ3 = 0.02 m. In the figure, recall that Ωc denotes



the complement of Ω. The interpretation of the switching conditions in Figure 5
are as follows. Suppose the initial state p(0) is in C+ (thus outside the region of
attraction for the backward motion system) and that the hybrid controller starts
in the forward mode. The system stays in this mode until β2 and β3 are small
enough, i.e., until (β2, β3) belongs to the ellipse defined by Φ. Then a switch to
the alignment control mode for backward motion along an arc of a circle occurs.
The system stays in this mode until |y3| is sufficiently small, when a switch is
taken to the mode for backward motion along a straight line. The other discrete
transitions in Figure 5 may be taken either due to that the alignment originally
is good enough or due to disturbances or measurement noise.

3.3 Low-Level Controls

In this section we briefly describe how the three individual state-feedback con-
trollers α = −K(p), applied in each of the discrete modes of the hybrid con-
troller, were derived and what heuristics that had to be incorporated.

Backward along straight line For the discrete mode for the backward mo-
tion along a straight line, we design a LQ controller α = −KBp based on the
linearized model (3) with v = −1. The choice of cost criterion is

JB =

∫ ∞

0

(

pTQBp + α2
)

dt QB = QT
B > 0 (14)

The heuristic we have adopted let us choose QB as a diagonal matrix, where the
y3 weight is the smallest, the θ3 weight one order of magnitude larger, and the
β3 and β2 weights another two orders of magnitude larger. The reason for having
large weights on β3 and β2 is to avoid saturations. In general, the intuition behind
this way of assigning weights reflects the desire of having decreasing closed-loop
bandwidths when moving from the inner loop to the outer one. For example,
the relative displacement y3 is related to β3 and β2 through a cascade of two
integrators, as can be seen from the linearization (4). It turns out that such a
heuristic reasoning is very important in the practical implementation in order
to avoid saturations.

Forward The state-feedback control in the forward mode is designed based
on pole placement. Since closed-loop time constant of y3 is of several orders of
magnitude larger than for the other three states of p, the measurement y3 is not
used in the forward controller. Instead consider the state p̂ = [θ3, β3, β2]

T
and

the corresponding linearized system. We choose a controller gain KF such that
the linearized system has three closed-loop poles of the same order of magnitude.

Backward along arc of circle For the backward motion mode, we consider the
stabilization of the relative angles p̄ = [β3, β2]

T of the corresponding linearized
subsystem (9). The state-feedback controller α = −KAp̄ is derived based on LQ
control. Recall that stabilizing the origin for (9) corresponds to stabilizing the
truck and trailer along a circular trajectory.



4 Analysis of Switching Control

In this section, the closed-loop system with the switching controller is analyzed.
First, a discussion on how to estimate the region of attraction for the reversing
truck and trailer is presented, then a result on asymptotic stability for the hybrid
control system is reviewed.

4.1 Region of Attraction

The switching conditions in the hybrid control scheme discussed in previous
section were partially based on an estimate E of the region of attraction for
the closed-loop system in backward motion. It is in general difficult to obtain an
accurate approximation for the region of attraction, particularly for systems with
state and input constraints [11]. In this paper we rely on the numerical simulation
of the closed-loop behavior. Hence, considering the nonlinear system (2) with
v = −1 and closed-loop control α = −KBp:

ṗ = −
(

A(p) + B(p, −KBp)
)

(15)

In order to obtain a graphical representation of the results, we disregard y3. This
is reasonable as long as the initial condition y3(0) satisfies the artificial constraint
y3(0) ≤ y3s introduced in Section 2. Note that this constraint does not influ-
ence the analysis of the other states, since y3 does not enter the differential
equations (1c)–(1e). The black region in Figure 6 shows states p̂ = [θ3, β3, β2]

T

that belong to the region of attraction. We notice that this cloud of initial con-
ditions closely resembles an ellipsoid. The figure also shows an ellipsoid strictly
contained in the region of attraction, which has simply been fitted by hand. Note
that the considered problem is related to finding the reachability set for a hybrid
system with nonlinear continuous dynamics. For our purposes, we used numerical
simulations validated by practical experiments, in order to have a mathematical
description of E . It would be interesting to apply recent reachability tools [7, 4,
12, 14] on this highly nonlinear problem.

4.2 Stability Analysis

Consider system (2)
ṗ = v

(

A(p) + B(p, α)
)

under the switching control defined in Figure 4. It is straightforward to show
that there exists a stabilizing controller if full state-feedback is applied in both
the backward and the forward mode, see [2]. Note, however, that the low-level
control for the forward motion discussed in previous section did not use feedback
from y3. Hence, we need a result on the boundedness of y3. Such a bound can
be derived and then under rather mild assumptions it can be proved that the
closed-loop system with the two-state hybrid controller is asymptotically stable
in a region only slightly smaller than D (see [2] for details).
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5 Implementation and Experimental Results

The controller for the truck and trailer shown in Figure 1 was implemented
using a commercial version of PC/104 with an AMD586 processor and with an
acquisition board for the sensor readings. The signals from the potentiometers
for the relative angles β2 and β3 were measured via the AD converter provided
with the acquisition board, while the position of the trailer was measured using
two encoders, placed on the wheels of the rearmost axle. The sampling frequency
was about 10 Hz, which was sufficient since the velocity was very low. Figures 7
and 8 show an experiment that starts with a forward motion for the realignment
of the trailer and truck, followed by a backward motion along an arc of circle.
(The backward motion along a line is not shown, since the truck reached the
wall before ending the manoeuvre). The entire motion of the system is depicted
in the left of Figure 7 with the configurations at two instances for the forward
motion and three for the backward. The input signal is shown in the right side
of Figure 7. The left graphs of Figure 8 show the state variable y3 and θ3 relative
to the manoeuvre of Figure 7, but with another scaling. The initial condition
is β2(0) = −40 deg and β3(0) = 40 deg with θ3(0) = 42 deg. This means that
the initial condition is outside the ellipsoid E , hence the hybrid controller starts
in the forward motion mode. After a while, the two relative angles β3 and β2

are small (and thus the truck and trailer is realigned). This is illustrated to the
right in Figure 8, which shows β3 and β2 as a function of x3. Since y3 · θ3 > 0,
the controller now switches to the mode for backward along an arc of a circle.
In total the system travels a distance of 2.5m in the backward mode and 0.7m
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Fig. 7. Experiment: sketch of the motion of the vehicle. Notice that the all the measures
along x3 are respect the center of the last axle of the trailer. The input signal is divided
in two subplots one for the forward and the other backward (along an arc) motion.

in the forward mode. Some videos showing the motion of the system can be
downloaded from [22].
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Fig. 8. Experiment: state variables [y3, θ3, β3, β2] relative to the maneuver shown in
the previous picture.
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