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Abstract—A new distributed estimation algorithm for tracking ~ each sensor, when the signal is affected by a zero-mean. noise
using a wireless sensor network is presented. We investigate howThe same linear filter was also considered in [6], where @&fast
to track a time varying signal, noisily sensed by the nodes of .,efficient computation is investigated. A related congens

the network. The algorithm is distributed, meaning that it does filter for distributed | fusion has b
not require a central coordination among the nodes. Moreover, ilter for distributed low-pass sensor fusion has been mego

the proposed approach is scalable with respect to the network in [7]. In [8], we have proposed an heuristic algorithm for
size, which means that its complexity does not grow with respect cooperative estimation in WSNSs. It is an extension to the

to the total number of nodes. The algorithm designed tumns algorithms in [4]-[7], in that the filter is adaptive and thby

out to be composed by a cascade structure. Local constraints it js petter in tracking time-varying signals. We showedttha
are determined to guarantee the global asymptotic stability of . . :
the filter performs well in practice.

the estimation error. The algorithm can be applied e.g., for the o -0 - ] .
position estimation, temporal synchronization, as well as tracking ~ 1he specific contribution of this paper is an extension of
of signals. Performance is illustrated by simulations, where our the algorithm presented in [8]. A mathematical framework is
filter is shown to behave better than other distributed schemes proposed to design a cascade structured filter. The filter is
proposed in the literature. run | v in hn It firstl m h
Index Terms—Distributed filtering; Wireless sensor networks; Su?posied :O Lf[ OC% )t/h eacd tOdi.h t tstt.yt.col putes tte
Cooperative Communication. optimal estimate, an en updates the statistical pasame
necessary to the new stage of estimation. A constrained
|. INTRODUCTION guadratic optimization problem is addressed to suitabbpad

Estimation using wireless networks of sensors (WSNgje filter coefficients. The solution of the problem provides
has a growing domain of applications in diverse areas su@hsnﬁhtly blqsed hestlma.te'bult .W'th aflow r:/arlance. In_ orQer
as communication, environmental monitoring, industriat ato characterize t edStat('jS“Ca r']np(l;ts ;r t_e nlelw estn_matl
tomation, surveillance, and transportation ([1], [2]) s&istial stage, a constrained and weighted sub-optimal least segiare

features of these systems are that they are widely dismbu{'nvestigated to provide an unbiased estimate. The approach
and that their operations rely on limited computational arfyesents a natural tradgoff between tracking performande a
communication resources, as discussed in [3]. Further,mo?@mpummnal complexity.

central coordination is often impractical or impossiblecs . Cqmpared to recent relevant work [4]-{7], our approach
the nodes communicate with low data rate and short ran .or|g|nal beca_use we adopt a more general model OT the
This is the case of large networks where the nodes have jer structure since we do not rely to the common heuristic

: . ; : of the Laplacian associated to the communication graph.
track or estimate a common time-varying signal (as, e.g., goreover pour approach differ from [5] and [6] sincg W‘;

clock or the intensity of a physical phenomenon commony ) . ) L . .
y Py P re interested to investigate distributed solutions, wagrin

sensed). ) .
) ch papers centralized algorithms are used to compute the

There is a recent interest in a class of simple and high} tici Furth ith g e
scalable distributed estimation algorithms. Here we lithi ter coefficients. Furthermore, with respect to [8], we

discussion to some recent and relevant contributions ] a better theoretical characterization of the estimate ef th
problem of distributed estimation of an average by a Wilselegrrc.)lr cova}rLancehmatn)é. Thef characterlz?lltlon enablezegum h
sensor network is presented. It is assumed that nodes t kg ter with enhanced performance when compared to the

a set of initial samples, and then iteratively exchange t |5|dings proposed in [8].

averages of the samples locally collected. Each node rsacheThe outline of the paper is as follows. After the estimation

asymptotically the global average. In [5], a more geneerOblem has been_ formuIaFed n S_ect|0n_ I, a d!scusspn on
approach is investigated. The authors propose the corrseﬁénLP'ased versus biased estimation is carried out in Selition

of the average of a common time-varying signal measured Sgctpn IV, the optlmal_ design of t_he decentra_llzgd es-
timation is presented. An implementation of the distrildute

Work done in the framework of the RUNES Integrated Projechtemt algorithm is proposed in section V, and numerical resulés ar

number FP6-1ST-004536, and the H_YCON Netvyork of Excellemmmtra_\ct given in Section VI. Finally, section VII concludes the pape
number FP6-1ST-511368. The work is also partially funded ey $wedish ith f .
Foundation for Strategic Research and Swedish ResearchciCou with future perspectives.

A. Speranzon is currently with Unilever R&D Port Sunlight, UK Notation: Given a stochastic variable we denote withlE =



its expected value. With.|| we denote thé?-norm of a vector the signald(t) is consistently estimated and the variance of
or the spectral norm of a matrix. Given a matdik we refer the estimate is minimized. Moreover, the solution should be
to its largest singular value with the symb®{K’). We say distributed in the sense that the computationkgf(t) and
thata o b if a = kb with & > 1. With I and 1 we denote h;;(¢) should be performed by nodeln the next sections we

the identity matrix and the vectdt, ..., 1)”, respectively, of will review some of the results presented in a previous work
appropriate dimensions. by the authors of [8] and extend the analysis of the estimator
Il. PROBLEM FORMULATION [1l. UNBIASED VERSUS BIASED ESTIMATOR

Consider N > 1 sensor nodes randomly placed on the Let us consider the estimation erreft) = z(t) — d(¢) 1.
space. We assume that each node can measure a comwerhave

scalar signali(t) corrupted by additive noise: e(t) = K(#)e(t — 1)+ K(B)d(t — 1)1 + (H(#) — Dd(t) 1
wi(t) =d(t) +vi(t), i=1,...,N, + H(to(t).

with t € NU{0} and wherey;(t) is zero-mean white noise. Let| ot ;s assume thal(t) = d(t — 1)+ (1)
us collect measurements and noise variables in veatGrs =
(ur(t),...,un(®)? ando(t) = (vi(t),...,vn(t))T, so that
we can rewrite previous equation in the following compact Ee(t) = K(t) Ee(t — 1) +d(t — 1)(K(t) + H(t) = I) 1
form +O(t)(H(E) - 1)1 . (In.1)

u(t)y =d(t)1 +v(t), t=0,1,.... .
We then have the following result.

The covariance matrix ob(t) is supposed to be diagonal Proposition 3.1: Let us consider the system (I11.1). Assume
¥ = 0?1, so thatv;(t) andv;(t), for i # j, are uncorrelated. that (Kt)+H(t)1 = 1 and5(K(t)) < 1 for all ¢ > 0.
With these assumptions it is clear that the additive noise c@hen we have that:
be averaged out only if nodes communicate measurements ar;)j If 6(t) < co andH(t)1 = 1, for anyt > 0, the system
estimates. Note that the communication rate of the measure- g uniformly exponentially stable.
ments and estimates should be just fast enough to track the For |5(t)| < A, for all t > 0, the system trajectories

variations of the signad(¢), but it is not required to be faster uniformly exponentially converge to a neighborhood of

for performance improvement. Indeed, reducing the samplin ¢ origin whose size is proportional td, namely
time is, in general, not beneficial because measurements may Ee(t) — Z(A) for t — +oo whereZ(A) = {y € R :

be affected by an auto-correlated noise. ly| oc A}.
It is convenient to model the communication network as an ;
. . Proof: If (K H 1 =1th h
undirected graplg = (V, &), whereV = {1,...,N} is the educerz(;oto (K®)+H(E) then the system equation
vertex set and C V x V the edge set. We will assume that i{
(i,7) € € then(j,i) € £, namely the graph is undirected. TheEe(t) = K(t)Ee(t — 1)+ 6(¢)(H(t) —I)1 . (1.2)
graphg is said to be connected if there is a sequence of edgeI If also it holds thatH(#)1 — 1 then (IIl.2) simply
in £ that can be traversed to go from any vertex to any other . .
. h . becomesEe(t) = K(t) Ee(t — 1), since by hypothesis
vertex. In the following we will denote the set of neighbors . :
4(t) < oo for all t. Let us consider the Lyapunov function

of node: € V as V(t—1)=|Ee(t —1)||. Then we have that
Ni={jeV:(j;i) € &}. V()= V(t—1) = | Ee(t)]| - | Be(t)]

. Taking the expected
value with respect to the stochastic variable), we obtain

The estimation algorithm we propose is such that a node < (IE@I =Dl Ee(t = 1)l
computes an estimate (t) of d(¢) by taking a linear combi-
nation of neighboring estimates and measures which is negative if and only ifl K (¢)[| = ¥(K(¢)) < 1.
ii) In this case we have thaf (t)1 — 1 = —K(¢t)1 and
vi(t) = Y ki(Dai(t— 1)+ Y hi(Hu(t). (11) thus the system equation becomes
JEN; JEN;
For nodei, the algorithm is initialized with:;(0) = u;(0) for Be(t) = K(t)Ee(t —1) - 0()K(®)1 -
all 5 € NV;. In vector notation, we have Let us consider again the Lyapunov functigift — 1) =
2(t) = K(t)z(t — 1)+ H(t)u(t). (11.2) [T e(t = 1)[I. We have
Note that the matrice () and H(t) can be interpreted as V) = VE-1) < (IKO] - D[ Ee(t - 1]
the adjacency matrices of two weighted time-varying graphs + [K@)[NA,
compati_ble with a giverg representing the underlying com- where we have used the fact tHaft)| < A. It is easy
munication network. to see that, in this cas&,(t) — V(t — 1) < 0 if
Given a wireless sensor network modelled by a connected ~
graphg we consider the following design problem: find time- [Ee(t—1)| > V(f((t)) NA (11.3)
varying matricesk (¢) and H (¢), compatible withG, such that 1—~(K(t))



with (K (t)) < 1. Thus ag — +oo then E (¢—1) tends indices. It follows from (IV.1) that the variance ef(¢) can
to the intervalZ(A) = NAY(K(t))/(1 — (K (t))). be evaluated as
| 2 T 2 T
Ee;(t)? = k;(O)IT;(t — Dk (8) + o?n:; () i (1), V.2
If we want to design an asymptotic unbiased linear estimatore ® Fa(t) Tl Ja(6) + o7ms(6) milt) (V2)
then the conditions in 3.1(i) need to be satisfied. Under thighere T';(t) = Ee;(t)e;(t)7. To minimize the variance of
conditions, it is possible to show that the variance is miné@d the estimation error in each node, we propose théat) and

if K(t) =0 and with H(¢) such that n;(t) are chosen to minimize (IV.2). In order to minimize
the variance at each node and have convergence as well, the
L if j €N following optimization problem should be solved at eachetim
hij(t) = hji(t) = § Vil t and in each nodé
0 otherwise
min i) Ta()Ri(t) + o?ni() () (IV.3)
Notice that in this case the nodes do not use any previous *:(t).m:(t)
information about the signal(t) and that the error variance st (mi(t)+m(t)T1 =1 (Iv.4)
at each node is proportional to its neighborhood size. F(K(t)) < 1. (IV.5)

However, if the signali(t) is slowing varying, then, under ) ) ) )
the assumptions of 3.1(ii), it is possible to guarantee thBPte, however, that the inequality constraint (IV.5) islgif
| Ee(t — 1)| tends to a neighborhood of the origin. As wéince K (t) depends on alk;(t), i = 1,...,N. To get a
can notice in (I1l.3) the size of this cumulative bias is smaplistributed solution, we consider the following relaxediop

if the maximum signal variation is such that mization problem
A < L) o in Ra(0) T Ta()i(t) + o ni(8) T ni(t) + Bra(t) T ri(t)
YK ()N -

st (wi(t) +m()T1 =1

We remark that the bound is rather conservative and one could i

try to find a different Lyapunov function which would yield aVhere we have removed the constraint (IV.5), but we have
tighter bound. However, we show in the next sections how Wedified the cost function. The parameter- 0 is a parameter

can determine the matrices(t) and H(t) so that both bias that enforce|lx;(1)|* to be small. Since the size of this
and variance are minimized. norm is related to the larger singular value ofK (t)) by

Gershgorin’s theorem and this, on its turn, to the cumuativ
IV. DESIGN OF THE DECENTRALIZED ESTIMATOR bias, as in (lll.3), then the3 parameter, roughly speaking,
allows a tradeoff between variance and bias.
The optimization problem we posed is tractable since the
In order to design a decentralized estimator to track tlest function is convex and the constraint is linear. Strong
signal d(t), we consider the error covariance matrix duality holds and each nodean compute the optimal weights
as

A. Variance minimization

P(t) = B(e(t) — Be()(e(t) - Be(t)”, (Lt =1 + 4071

where we assume that(t — 1) and u(t) are independent ri(t) = o 2M; + 1T(Ty(t — 1)+ BI)~11 (IV-6)
stochastic variables. Using the state equation (l11.1) \aeeh 1
that the covariance update can be computed as ni(t) (IV.7)

- M;+o21T(;(t—-1)+p1)711°

P(t)=KM)P(t-1)K®)" +o’HHH®T. (V1) Note that the covariance matrlX (¢ — 1) needs to be known
The problem is then to determin& () and H(¢) so that, at nodes so that it can compute the Welghts. Since we assume
. : . . . ' that the nodes can exchange only estimates and measurements
given the covariance matriR(t — 1), the covarianceP(t) is . . :
the covariance matrix needs to be estimated from data.

minimized. A centralized solution can be obtained through a : . .
A ) . o The estimator developed so far is shown as block diagram
semi-definite program, as discussed more in [8], but it is not

) ; - . X S . on the left of Figure 1. Notice that the filter has as input the
interesting here since our goal is to find a distributed atlyor. : ;
: L .~ measurement vectar(t) and that it uses the previous error
Let M; denote the number of neighbors of nagee., M; is covariance in order to adaot the filter gains
the cardinality of\; = {i1,...,4a}. Collect the estimation P 9 '
errors available at noddn the vectore; € RM:. The elements B. Estimation of error covariance

of ¢; are ordered according to the node indices: Since the estimator is a discrete linear time-varying syste

and the stochastic proces$) and thuse(t) is not stationary,

the estimation of the error covariance is not an easy task.
Similarly, we introduce vectors:;(t),n;(t) € RM: corre- However, if we consider the signals in the quasi-stationary
sponding to the non-zero elements of revof the matrices sense, estimation based on samples guarantees to give good
K(t) and H(t), respectively, and ordered according to nodessults. In particular we give the following definition.

T . .
€ = (€irse-er€irg,) i1 <-o- <ipg -

i



Filter designed in section IV-B

estimator. Roughly speaking, nodehas available2)/; data
R L e - i § values in which half of the data are corrupted by a small biase

! B x(0), P.(0) e v (0), Pc(0) ! N ) R
) | b 3 term &(¢) and a low variance noise(t) and the other half is
H | corrupted by zero-mean Gaussian noigg) with rather high

D (e 4 (0 <) 1 Va”ance' . ) . A
D ] with weights (IV6) Eq. (V12) Eq. (V) | Felt) It is clear that using only.’(¢) to estimated(t) we can

and (IV.7) and (IV.9)

obtain an unbiased estimate @ft), however its covariance
is rather large sincd/; is typically small. Using only mea-
surements we then over-estimate the error covariance and
this results in poor performance. On the other hand using
x%(t) only determines an under-estimate of the covariance,
which rapidly makes the weighig(¢) vanish. In this case the
signal measurements are discarded and thus tracking become

Fig. 1. Block diagram of the proposed estimator. Notice that & cascade jmpossible. In order to use bothi(t) and ul(t) we pose a
of two sub-systems. The one on the left is adaptive and it mesla good
estimate of thel(¢) with low variance and small bias. The sub-system on thlf"ast square problem as follotus

right, instead, estimates the error covariance. i i
2 1()-+()
d.é u 3
Definition 4.1 ([9, pag. 34]):A signal s(t) is said to be st <P <p
guasi-stationary if it is such that
() Es(t)=ms(t), ms(t)| < C for all t

Pt —1)

2

where the matrixA is the signal model, namely

(i) Es(t)s(r) = Rs(t,r), |[Rs(t,r)| < C for all t and 4 1 I\ /d

. (@)= ( o) ()

li ! R.,(t,t —7)=R
NN 2; s(t:t —7) = Ry(7) and the constraint can be represented as
t=
. 2 ~ 2
for all 7, and whereC' € R is constant. H (0 1) (cs _ HB (d> <)

It turns out that if a quasi-stationary signal is the inputaof 3 3

uniformly exponentially stable time-varying linear syst¢hen However, the problem is difficult to solve in a closed
its output is also quasi-stationary [10]. In particular ioro form [11]. Furthermore, previous formulation has the faho
case the input signal is the measurement sigrig) which g gisadvantages: (1) requires heavy numerical algositfan
is (component-wise) stationary and ergodic and thus alggiermine the optimal solution (typically SVD decompasil

quasi-stationary. This implies that als¢t) is quasi-stationary (2) the value ofp is not known in advance. We thus consider
(component-wise) since it is the output of a uniformly expane following regularized problem
nentially stable time-varying linear system. We can edstima )
oo Q)
£

. . . . . A 2
the error covariance using the sample covariance. In pdatic in H <r1> 4 (d)
dé u' 3
whererv > 0 is a parameter whose choice is typically rather

(IV.10)

we have that the sample mean, () and covariance estimate
of I';(¢) can then be computed as

. 1< difficult. We propose here to use the Generalized Cross-
e (t) = ¢ > alt) (IV:8)  validation method [12]. This consists in choosing
=0
. 14 v = arg min ¢(v)
Li(t) = 7 > (&(t) = e, (D) (&(t) — e, (1) (IV.9)
= where
~ T T —1(pt ,2\T
whereé;(t) = «'(t) — d. Thus the problem reduces to design o(v) = (A" A+vB B)” (a,u) |

an estimate ofi(t) from data. A nodei in the network has tr (ATA+vBTB)™

available the estimates;, (t) and measurements;, (t) with  Taking the derivative of the argument of (1V.10), after some
i; € N;. Let 2'(t) and u’(t) be the collection of all these algebraic efforts, the solution of the optimization prablés
values. From the design of the estimator described in the s AT DT - 7oy —1

previous section we can model this data set as (d,§)" = (a",u)" A (A A+vB B) :

2i(t) = d(t) 1 + £(t) + w(t) The inverse of the matrix in the previous equation can be
i computed in closed form using the following result:
wi(t) = d(t) 1 +o(t),
) . . lwe disregard in the following the time dependence both becailsthe
M;
Wheref(t) € R™ models the bias of the estimates antt)  yariable are considered at a certain time instanaed to keep the notation
is zero-mean Gaussian noise modelling the variance of tiyater.



Proposition 4.2:If v > 0 then Algorithm 1 Estimation algorithm for node

—1 1.t:=0
(A"TA+vB"B) = 2. =0
Q7T 3. 15(0) :=0°1
1 1+v 1 . 4 2:(0) == ui(0)
M(1+20) | -1 M(1+2v)I+ 11 (IV.11) 5. while foreverdo
‘ 1+v 6. M; := |\
Proof: By Schur’s complement we obtain ;' ZE;'JA it —1)+ 801
(ATA 4+ Xa"a) " = ST M+ 1TR (- 1) + )1 1
— 1
M; ! 9. mi(t) == -
oM; — — 17107 —2M; (1 4+ \)I)~? Mi + o2 17 (Li(t — 1) + BI)~' 1
L+A 10. Letj e N,

z’ v1Tzt + (14 v)1 T

., ) 127\ 11 z(t) := 32, kiy (B (t — 1) + mi; (H)u; (1)
(117 — 2M;(1 + NI)'1 ((1+A)I— )

2M; 12. £:= -
1+v M;(1+2v)(1 4 v)
From [13] it follows that 13. & :=¢&
-1 1
1717\ 1 I 117 14. 1, (t) :== t—mei(t—l)—ﬁ-f&(t)
A+ ———) = + , t t
2M; 1+v  M;(1+2v)(1+v) ‘1 1
A, Pp— 7A. —_— — A, _ A A, —_ A T
It is easy from here to show that the resulting matrix is (1y.1 12 el;l;(t\?vhie Lt = 1) + t(ﬁ(t) mite; (£)) (& (8) = 1, (1))

[ |
Since we are interested to kneyw(t) = z'—d 1, we observe
that an estimate of this difference §s This is given by

xt v1Tz + (1 +v)1 Ty
1+v M;(1+2v)(1+v)

The covariance estimator we have developed in this section
is depicted on the right of the block diagram shown in
Figure 1. Thus, using as an estimate of the estimation error
we compute the error covariance from samples.

As it appears clearly from Figure 1, the total estimator
is a cascade of two sub-systems. One, on the left, which
is adaptive, and is used to produce a good estimate of #hg 2. The topology of the network with' = 25 nodes used in the
d(t) and the other that provides a good estimate of the ergpulations.
covariance.

£ =

1 (IV.12)

V. IMPLEMENTATION Note that the algorithm is implemented under the assump-

The implementation of the estimation algorithm is showHOn that each node is able to compute and communicate data
as Algorithm 1. First, each sensor initializes the local medVithin the sampling instance.
estimation errori. = 0 (see line 2) and its local covariance
matrix estimate with the noise covariance, iig(0) = 021
(see line 2 in the algorithm), where we remark that we are Numerical simulations have been carried out in order to
using the “hat” since these are sample estimates of the realidate performance of different solutions. In particulee
mean and covariance of the error. The optimal weights aigve compared the estimator proposed in this paper with an
computed using equations (IV.6) and (IV.7) (lines 8 and B). lestimator that takes as estimate an average of the received
line 11 we compute the optimal estimate. Lines from 12 f@formation from the neighbors, which we call here average
15 implement the covariance update based on the availabiimator and the estimator previously proposed in [8]. We
data by solving the constrained least-square consideredhiiye simulated a network withv = 25 nodes randomly
the end of subsection IV-B. Sample mean and covariang@pk)yed on a Squared area of 5W¢2 and such that two
of the error are updated in lines 14 and 15. Notice that Wides were able to communicate if and only if their relative
used a recursive way of computing (IV.8) and (IV.9).  Ijistance was less or equal 16v/N. The generated network
the algorithm, the inversion of the covariance matrix sbouls shown in Figure 2. The average number of neighbors for
be computed. This is not a difficult operation in resourcgach node is about 6.2. The signal to track was
constrained sensor networks, since each node has generally

a rather limited number of neighbors, and thus the size of thg ) = 3¢ 2mt 95 27t . ort \/?
matrix I'; is small. (8) =3sin { 7500 ) =250 1500 ) 51" | To00 ’

VI. NUMERICAL RESULTS



. . . A Estimat
The measurement noise was with variande= 1.2. Measurements s 0° ESMATr

The realizations for all 25 nodes are shown in Figure 3. The
first plot shows the raw measurements, the second the ouftput o
the average estimator, the third the output of the decérdrhl
estimator proposed in [8], and in the last plot the output
of the new proposed estimator is reported. The performance  Decentraiized Estimator in [8]  New Decentralized Estimator
improvement is clearly visible in Figure 4, where the same
realizations are shown between= 1000 and ¢t = 2000.
Numerical comparisons give:

Estimator | Std. dev. MSE| 58 | p i o e e i e v e R e e T
Average 0.276 - -

Previous ([8]) 0.178 0.0 | - Fig. 4. Zoom of the realizations in Figure 3 in the intervat [1000, 2000].
Present pape 0.139 0.03| 0.7

Thus the proposed decentralized estimator yields an ineproin [8], for the estimation of time-varying signal using a @4r
ment of about 50% with respect to the average estimator, dads sensor network. A mathematical framework is proposed
of about 21% with respect to the estimator we proposed in [8h design a cascade structured filter. The filter is supposed t
The choice of the filter parametegsand p is in general de- run locally in each node. The proposed estimator depends on
pendent on the maximum signal variation. Simulations showso parameters. Some rule-of-thumb and numerical proesdur
the following rules of thumb: are suggested in order to choose the parameter values.

i) Chooseg so that the maximum singular value &f(t) Future work includes the refinement of some of the bounds
is bounded away from. In particular some preliminary we have used in the design in order to provide a more precise
tests shows that = 0.01 to 0.05 bounds the value of guidance in the choice of the filter parameters. Stabilitgl-an
(K (t)) in the range 0.65 to 0.8 rather independently oysis of the filter and robustness to packet-losses are dlyren
the size of the graph and its connectivity for a givdn under investigation.

i) The computation ofv might be demanding on resource
limited sensor nodes. However, observe that the matrix ]
(ATA +vBTB)~! can be computed in closed form, so The authors_ thank. Prof. H. Hjalmqrsson_ and Prof. B.
one can create a lookup table ofy) for different values Wahlberg for interesting and fruitful discussions on some
of v. Notice that the matrix is small)/; + 1) x (M;+1) 2aSpects related to the paper.
and that it can be stored efficiently because of is particular
structure. Given a’ andu’ one can then search for the
minimum v in an efficient way.
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