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Backward line tracking control of a radio-controlled truck and trailer
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Abstract

A control scheme is proposed for the backward line
tracking problem of a truck with trailer. It combines
two different regulators, one for backward motion and
the other for forward, in a switching scheme that as-

sures convergence to the desired line. The scheme has.

been implemented and successfully used to reverse a
radio-controlled vehicle.

1 Introduction

This paper describes a feedback control scheme used to
stabilize the backward motion of the radio-controlled
truck and trailer shown in Figure 1. The vehicle re-

Figure 1: The radio-controlled truck and trailer

produces in detail the geometry of a full-scale lorry;
it has four axles, actuated front steering and actu-
ated second axle to govern the longitudinal motion.
Like the real one it presents saturations on the steer-
ing angle and on the two relative angles between the
bodies. It is equipped with potentiometers and dif-
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ferential encoders so that full state feedback is possi-
ble. Our control task is to drive the system backward
along a preassigned straight line, avoiding jack-knife
effects on the angles. There is a moderate literature
on backward steering control of multiple wheeled ve-
hicles reporting on experimental results achieved with
different control techniques and with different kinds
of vehicles, mainly especially built laboratory mobile
robots, see for example [4, 8, 12]. Numerous papers
treat the backing problem with tools spanning from
neural network [9], fuzzy control [5, 12], learning, ge-
netic algorithms and expert systems [3, 10]. Only a
few works make use of more theoretical tools steam-
ing from the literature on control of kinematic vehicles
(overviewed for example in [7]), see [6, 11]. According
to such formalism, our system is a general 3-trailer,
general because of the kingpin hitching between the
second axle and the dolly (see [1]). From a system
theory point of view, the control problem is quite chal-
lenging: it is an unstable nonlinear system with state
and input constraints. The “reduced” control goal of

stabilization along a line (instead of a point) allows
to consider a system with controllable linearization so
that local asymptotic stability can be achieved via Ja-
cobian linearization. Still, the combination of insta-
bility and saturations makes the task impossible with
a single controller. The scheme we use consists of a
switching controller with a logic variable (the sign of
the longitudinal velocity input v) that allows switch-
ing between the two different modes, backward (open-
loop unstable) and forward (open-loop stable), each
of them governed by a linear state feedback designed
via linear quadratic techniques on the Jacobian lin-
earizations. Since v Is a control input for the sys-
tem, it becomes the natural choice for a logic variable
that switches between two regimes governed by two
different feedback controllers. In order to automati-
cally select the logical value of v, a suitable partition
of the state space has to be given. The crossing of



Figure 2: The kinematic model of the truck and trailer
of Fig. 1

the switching surfaces of the partition and the direc-
tion of crossing provide the feedback information to
v. In synthesis, the switching can be seen as an ex-
tra feedback loop around the two different closed loop
modes. The switching surfaces and the switching logic
are designed in such a way that the desired equilibrium
inside the backward motion regime is given the car-
acter of global attractor from all the initial conditions
in a prespecified domain.

2 Kinematic equations and lin-
earization
The differential equations describing the kinematic of

the vehicle under exam (see Figure 2 for notation) can
be found for example in [1]:
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- The two inputs of the system are the steering angle o
and the longitudinal velocity at the second axle v. Call
p=lys 03053 ﬁz]T the configuration state obtained
neglecting the longitudinal component 3.

In a compact way, the state equations are written as:

p = v(A(p) + B(p, @) (4)

The sign of v decides the direction of motion. v < 0
corresponds to backward motion. The entire state is
measured via two potentiometers on the relative an-
gles B and 33 and a pair of encoders on the two wheels
of the rearmost axle. No inertial measure is available.

State and input saturations Both the relative an-
gles B2 and f3 present hard constrains:

B2
|Bs|

These limitations are due to the front and rear body
touching each other and to the dolly touching the
wheels. They are particularly critical since for back-up
maneuvers the equilibrium point is unstable and jadk-
knife effects appear on both angles. Also the input
has a saturation:

< B2, =0.6rad
< f3, = 1.3rad

(5)
(6)

(M

The steering servosystem tolerates very quick varia-

|o| < @y = 0.43 rad

- tions, so we do not assume any slew rate limitation in
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the steering signal.

Jacobian linearization along straight lines The
system (4) is homogeneous in the longitudinal input
v. Fixing v as a given nonnull function means having
a drift component which gives a nonvanishing term to
the differential equations of the system. The steering
angle « can be used to give asymptotic stability to the
system along a trajectory. The equilibrium point of p
is the origin pe = 0 and it corresponds to a nominal
value of the steering input o, = 0. The linearized
system is

p =v(Ap + Ba) (8)

where
0 1 0 0 0
00 + 0 0
A=g o 2L 1| B=|_m |
L3 L Llj‘lf
0 0 0 -1z JLLLlLQ

3 Con trollers for bakward and
forw ard motion

3.1 Backward controller

Consider the straight line backing case. The lineariza-
tion (8) is open-loop unstable: the characteristic poly-



nomial of the uncontrolled system is

det (sI — vA) = s (s+ E) (5+E>

Since (8) is controllable, the origin of the nonlinear
system (4) locally can be made an asymptotically sta-
ble equilibrium by linear state feedback. We treat it
as a linear quadratic optimization problem and in the
weight assignment we use the rule of thumb of trying
to have decreasing closed-loop bandwidths when mov-
ing from the inner loop to the outer one in a nested
loopshaping design. In fact, the relative displacement
ys comes after a cascade of two integrators from the
relative angles as can be seen on the linearization (9).
It turns out that such a heuristic reasoning is very
important in the practical 1mplementatlon in order to
deal with the saturations.

(10)

It is in general difficult to draw conclusion on the in-
variance properties of the flow of a nonlinear system.
If in addition one takes into account the state and in-
put constraints (5)-(7), then an analytic description
becomes almost impossible. Therefore, in order to ob-
tain estimates of the region of attraction of the linear
controller

Kp = [kp, .-

kg,] (11)

and of the contractivity of the resulting integral
curves, we rely on the numerical simulation of the
closed-loop behavior of the original nonlinear system
(4) paired with the linear controller (11)

@ = ——[(Bp

p = Fp(p) = v(A(p) + B(p, —K5p)) (12)

In order to obtain a graphical representation of the
results, in the following we neglect the ys component
of the state space which is by far the less critical one
with the LQ controller under use.

The cloud of initial conditions that represents the
region of attraction closely resembles an ellipsoid in
P = [0 B3 B2]T space. The fitting of an ellipsoid &
strictly contained in the set of succesfull initial condi-
tions can be done by direct investigation, see Figure
3. The principal axes q = [q1 q2 ¢3]7 of the ellipsoid
are related to p by an orthogonal transformation:

p=Req Re € SO(3)

Calling €1, €2 and ¢3 the semiaxes of <‘f, the ellipsoid
is given by the algebraic equation

£{++—}
el € &

(13)
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Figure 3: The succesful initial conditions and the fit-
ted ellipsoid €.

Taking into account also the y3 component of the ini-
tial conditions, the ellipsoid £ € R* is given by

)

with g4 > €;, i = 1,2,3. In D the difference with
respect to Figure 3 can hardly be appreciated.

2 2 2 2
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From Figure 3, we draw the qua]itativeAconclusion that
for the closed-loop nonlinear system & is a positively
invariant set.

3.2 Stabilization for forward motion

When v > 0, in (10) the two unstable poles move on
the open left half of the complex plane. Considering
the subsystem p means neglecting one of the two poles
in the origin. The origin of p is asymptotically sta-
bilizable by linear feedback and this time convergence
for the nonlinear system is a less critical problem. The
reason for neglecting y3 when moving forward is again
the same: the closed loop mode relative to ys has a
natural time constant higher of several orders of mag-
nitude when compared to the other states.

Assume for example v = 1. Extracting from (9) the
three dimensional system (A, B), linearization around

the origin of (1)-(3), it is possible to choose a linear
feedback
a=Kpp (15)

such that the closed loop system p = v(/i - BI%p)f)
is asymptotically stable and has three distinct real



modes. The practical rule here for the selection of the
eigenvalues is to try to have all 3 closed-loop poles of
the same order of magnitude. The unavoidable input
saturation will not destroy stability anyway.

A forward feedback on ys is of no practical interest
because of the long time constant of the y3 mode.

4 Switc hing con troller

The region of attraction of the backward controller
is only a subset € of the entire domain D. Starting
from outside &, it is necessary to first drive forward
for example with a controller like (15) until the sys-
tem enters inside & and only then switch to backward
motion. When rev ersing, the main manifestation of
a destabilizing perturbation is a jack-knife effect on
the relative angles. Just like on a full-scale truck and
trailer vehicle, the only way to recover from such a
situation is to move forward and try again. So, in or-
der to guarantee stability of the backward motion in
D and not only inside the ellipsoid &€ for the nominal
model and in order to cope with the perturbations, one
single controller is not enough. The switching variable
between the two controllers is the longitudinal veloc-

ity v. For example we assume shat v € {—1, 41} 27
The backward regime is selected by v = —1 and the
forward one by v = +1. Since the longitudinal input
v is a control input, if we assume that v € Z then v
becomes a controlled logic variable. Moreover, if the
selection of the logic value of v is made according to
a partition of the state space, the overall system with
multiple controllers becomes a feedback controlled sys-
tem. This is feasible in our case since we have on-line
full state information available.

4.1 Selection of the two switching sur-

faces

Two are the switching surfaces that delimit the par-
tition of the state space, and #heir crossing in a pre-
scribed direction by the flow cf the system induces a
sign change in v.This in its turn causes the inversion
of the direction of motion and induces the activation
of the corresponding linear state feedback controller.
These switching surfaces, call them S_4 and S;_ have
to be chosen such that they give to the point p = 0 of
the backward motion the character of global attractor
(in D).

Since in both regimes the origin is the closed-loop lo-
cal asymptotically stable equilibrium poin t, we choose
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both S_; and Sy_ as closed hypersurfaces in R* con-
taining the origin in their interior.

The switching surface from forward to back-
ward motion: S;_  From Section 3.1, §;_ has to
be contained inside £. The simplest choice is to con-
sider Sy _ = &, for some p such that 1 < p < 1. The
trade-off is the following;:

o if S, _ is large (p — 1) the system will be sensi-
tive to disturbances and more easily destabilized
by perturbations (meaning more switc hes can oc-
cur);

if S4_ issmall (p — ) the forward regime will be
very long, which is often unacceptable for practi-
cal implemen tations.

Ellipsoids smaller that £1 are also not recommendable
for other reasons, like the possibility of being com-
pletely “jumped over” in case of relevant sensor error.

The switching surface from backward to for-
ward motion: S_, Such a switching surface has
to “tell” the system that backing is not going well and
the trailers need to be realigned. The choice is quite
flexible, the only constraint is that S4_, S_4 and the
sides of D must not intersect. In particular the set
distance between S;_ and S_, gives the hysteresis
between the two regimes. If this distance is positive,
problems like chattering will be avoided. One simple
choice for §_ is for example to use a cube in R* which
is a rescaling of D by a factor less than 1.

Control logic for v D is divided into three nonin-

tersecting regions:
o C_ = region inside S4_ where v = —1;

o C = region between S_ and §;_ where v can be
either +1 or —1;

e C. = region outside S_y (C4x = DN (C UC_)L)
where v = +1.

Changes on v occur only at crossing with the rules of

Table 1.

4.2 Convergence for the nominal and
perturbed system

For the nominal system we can assert the following;:



change in v  switching surface crossing direction

C—C_
C—Cy

+1 - -1
-1 — +1

i
S_y

Table 1: Switching rules for v.

Theorem 1 Under the assumptions of invariance of
&, the system (4) with the two controllers (11) and
(15) respectively for the cases v = —1 and v = +1 and
with the feedback rule of Table 1 for v € I, asymptoti-
cally converges to the origin in backward motion from
any initial condition in D.

Proof From the analysis of Section 3 and looking
at the switching rules of Table 1, the following order
relation is the only possible one for the system:

C
v=+1

C_
v=—1

Cy — —

v=+1

In fact, from any po € D, the controller (15) steers the
system inside Sy_ and S, is a positively invariant
set for the controller (11) ]

So for the nominal system the switching surface S— 4
is never in use. Due to the unstable equilibrium point,
the effect of perturbations is critical in C... Since the
whole stabilization developed here occurs along a tra-
jectory, we cannot expect the disturbances affecting
the system to be vanishing at the equilibrium point of
(12). When a perturbation is large enough to pull the
state out of £ the system diverges. Trying to quantify
the amplitude of the destabilizing perturbations and
consequently trying to infer total stability for a class
of bounded perturbations is very hard in our situation
because of the input saturation involved. The desta-
bilized system keeps driving backwards until it hits
the S_ surface. After that, it inverts the direction of
motion and try again to converge inside S;_ with the
forward controller.

As said above, if the S_; and S;_ do not touch each
other, then degenerate switching phenomena (nor-
mally referred to as Zeno chattering) do not occur.
Furthermore, also the different pole placement philos-
ophy adopted in the two controllers (11) and (15) (in
one the critical mode, the 65 mode, is slow, in the
other it is instead faster) is meant to avoid a chat-
tering type of behavior (like keep moving the system
back and forth between the same points on S_4 and
S84 ) which can happen if the two closed-loops resem-
ble each other.
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5 Experimental results

The controller for the truck and trailer shown in Fig-

ure 1 was implemen ted using a commercial version of
PC/104 with an AMD586 processor and with an ac-

quisition board for the sensor readings. For the rel-

ative angles 2 and 33 we used AD Converter pro-

vided with the acquisition board while the distance

from the target line (y3) and the angle of the trailer

with respect this line (f3) were measured using a Dig-

ital Input/Output Port. These inputs were read by

a Interrupt Service Routine called at a frequency of
9kHz. This frequency and the 500 pulse shaft ensured

a maximum speed of about 0.2 m/s whidi was suffi-

cient for this application. The error on the relative

angles is about 3-4 degrees due to a very high resis-

tance of the potentiometers with respect the voltage
applied (5V). To reduce it the values of the angles were

averaged over 5 measures. The error on the angle of
the trailer, due to the encoders, is given by the resolu-

tion of the encoder itself and it is less than 0.7 degrees

while the error on the linear distance (along xs and

y3) is about 0.4 mm. The controller was written in
C and used at a frequency of about 10Hz since the

velocity of the system was very low.

Fig. 4-6 present the result of a simple real manouvre.
The switching scheme used is the two-state automa-
ton described in Section 4. The states and input are
plotted versus the distance travelled. The manouvre
is shown in Fig. 7 using the experimental data. The
vehicle starts with saturated relative angles and first
drives forward in order to realigne itself, then reverse
along the reference line. The transient in yz is very
long and only a part of it is shown. Notice that since
the #3 mode is slower than those of the relative angles
most of the forward motion is needed to get #3 inside
the ellipsoid 84_. Finally, in Figure 6 1t is instructive
to compare the activity of the feedback input when
the open loop system is stable (upper plot) and when
it is unstable (lower plot).
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