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Abstract— In this paper, we consider a minimalistic approach
to mobile robot localization that constrains the robot’s ability
to sense its environment to a binary detection of uniquely
identifiable landmarks having unknown position (e.g., a com-
modity WiFi transceiver detecting network SSIDs). Central
to the proposed solution are dual landmark and observation
complexes (simplicial nerve complexes), which can be iteratively
built through local observations without any metric or time-
sequenced information. We have shown that these complexes ap-
proximate the topology of the underlying physical environment.
Specifically, the notion of a “hole” within these complexes natu-
rally represents a physical structure (e.g., a building) that limits
landmark visibility/communication with respect to the robot’s
location. Taking advantage of this property, we formulate a
homological sensing model that operates on these constructs
enabling the robot to “count” the number of structures in its
vicinity using local homology computations as a metric-free
surrogate sensor. Our homological sensor model is presented
in the context of a Monte-Carlo localization algorithm that
resolves robot location by correlating the measured number of
holes with an unlabeled, metric map location.

I. INTRODUCTION

Imagine an autonomous robot, equipped with only a
WiFi transceiver and an IMU1, traveling through an urban
canyon. Although the robot is given a map revealing building
locations (perhaps via Google Maps), it cannot identify these
structures nor any other potential anchors within the map.
The robot has only available its IMU measurements, its un-
labeled map, and the location-free SSIDs that it has seen with
its transceiver (in a binary fashion) throughout the duration
of its travels. Given such limited sensing information, can
the robot recover its location within the map?

Key to enabling localization (albeit coarse) in this context
is the realization that the assumed sensor model, although
primitive, still contains enough information to generate a
topological map (in the form of a simplicial nerve complex)
of the robot’s workspace. Since this metric-free map is
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constructed from a visibility-based sensor, under sufficient
observation density, its topological invariants (e.g., holes)
naturally correspond to physical structures in the robot’s
workspace that limit its visibility (or, alternatively, commu-
nications) to landmarks. Taking advantage of this feature,
we formulate a localization pipeline in which the agent
first uses its binary sensing capabilities to build a simplicial
representation of its environment to enable local homology
computation revealing the number of proximal holes. In this
case, we define proximity via a coarse pseudo-metric. Using
the number of holes as a surrogate for the number of physical
structures nearby, the agent can correlate its measurement
with an unlabeled metric map thereby closing the loop.

It should be also noted that, in the context of RF-based
localization, quite a few algorithms have been developed and
demonstrated in the literature that use ranging and/or bearing,
see [1], [2], [3] and references therein. However, to use such
information, an estimate of the range and/or angle of arrival
needs to be determined from measurements of, e.g., power,
time of flight, phase difference, etc. For such measurements,
statistical models can be very complex as they depend on the
level of interference from other transmitters, materials within
the environment, type and number of obstacles between
receiver and transmitter, etc. The approach taken in this
paper becomes very relevant when such statistical models are
difficult to obtain. Typical examples are those corresponding
to indoor or urban environments.

Although the robot has a map of its physical workspace,
the position of the landmarks it uses to build its landmark
complex is not known to the robot (and thus they are not pro-
vided in the map). Additionally, despite knowing that holes
in its landmark complex correspond to physical structures
in its environment, the robot cannot uniquely identify these
holes and it has no knowledge of which hole maps to which
structure. It can only enumerate these topological features in
its local landmark homology.

II. RELATED WORK

The tools employed herein are rooted in algebraic topology
and have, but recently, gained attention from the robotics
community. Seminal results have used such tools in various
application contexts that include coverage verification [4],
[5], [6], [7], motion planning [8], [9], [10], [11], [12], metric-
free target tracking and enumeration [13], and, even, the
characterization of robot gaits [14]. Topological localization
via signals of opportunity is considered in [15], although
in a different context when compared to this paper. Specif-
ically, it does not address the case of a moving robot and
the associated (dynamic) filtering problem to estimate its
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position. Others have also considered topological algorithms
for estimation. However, in these works, topology is largely
defined as a graphical embedding representing environmental
free space. Recent results in this area include [16], [17], [18].

Due to the coarseness of the available information, in this
paper we will rely on Monte-Carlo based filtering. These
methods are a standard tool for non-parametric, state-based
estimation that have been widely adopted by the robotics
community. They appear with various levels of sophistica-
tion [19], [20], [21]. Additionally, localization using low-
grade, commodity sensing modalities (e.g., WiFi, acoustics,
depth cameras, etc.) has also been studied in a variety of
contexts [22],[23],[24],[25]; however, central to many such
approaches is a precise calibration procedure for correlating
the signal of interest with some metric quantity. Finally,
results with visibility-based simultaneous localization and
mapping (SLAM) [26], [27] (and references therein) have
a natural kinship with this research.

III. MATHEMATICAL BACKGROUND

Given the centrality of algebraic topology to the forthcom-
ing results, we provide a brief index of key definitions and
constructs. The reader is referred to [28] for a comprehensive
treatment of the subject.

A. Simplices, Simplicial Complexes and Nerves

We make liberal use of simplicial complexes. An abstract
simplicial complex based on a vertex set V is a collection
K of finite subsets of V (called simplices closed under the
operation of taking subsets: if σ ⊂ V is a simplex (σ ∈ K)
and τ ⊂ σ ⊂ V , then τ ∈ K as well. In this case, τ is
called a face of σ. The dimension of a simplex is given by
dimσ = |σ|−1: e.g., a 2-simplex is an unordered 3-tuple in
V , and a k-simplex is an unordered (k+1)-tuple in V . The k-
skeleton of a complex is defined as the union of all simplices
of dimension k and below: K(k) := {σ ∈ K : dimσ ≤ k}.

As with the more familiar case of graphs (1-skeleta),
abstract simplicial complexes always possess a geometric
realization, obtained by gluing together geometric simplices
[28]: the illustrations in this paper represent simplicial com-
plexes in this manner. This furthermore permits thinking of
simplicial complexes as topological spaces, complete with
topological invariants.

We make particular use of simplicial complexes that are
nerves associated to a cover.

Nerve Complex: Given a collection of sets U = {Uα}, the
nerve complex, NU , is the abstract simplicial complex whose
k-simplices are unordered collections of k + 1 elements of
U having non-empty intersection.

By the Nerve Theorem [29], when U consists of, e.g., con-
vex sets in Euclidean space, NU is homotopic (topologically
equivalent) to the union ∪αUα. Convexity is sufficient but
not necessary.

B. Homology Groups

Homology provides an algebraic means to characterize
the holes in a topological space. At its core lies the no-
tion of a boundary homomorphism, which for simplicial
homology encodes how simplices are attached to their lower-
dimensional faces. To define this for a complex K, we
choose an ordering (in the manner of directed graphs) for
each simplex. An ordering on a k-simplex, σ ⊂ V , is
a literal ordering of its vertices [v0, . . . , vk], up to the
equivalence generated by even permutations. Given such a
choice, consider the R-vector space Ck(K) with basis the
oriented k-simplices in K. Multiplication by −1 reverses the
orientation. A boundary homomorphism is defined as the
linear mapping ∂k : Ck(K) → Ck−1(K) given by sending
each basis element of Ck(K) to the formal sum of its
(oriented) faces of dimension k − 1.

With the boundary operator ∂ = {∂k} encoding the as-
sembly instructions of K, certain global topological features
can be deduced from the resulting linear algebra. The kth

homology group of K, Hk(K), is, in this setting,

Hk(K) = ker ∂k/ im ∂k+1. (1)

This is the quotient vector space whose generators are k-
cycles (corresponding to k-dimensional boundaryless sub-
complexes surrounding a hole) modulo the equivalence re-
lation that says two such k-cycles are the same (or ho-
mologous) whenever they are the (oriented) boundary of a
(k+1)-dimensional subcomplex. Among the key properties
of Hk(K) is that its dimension (i.e., number of generators)
corresponds to the number of “k-dimensional holes” in the
simplicial complex.

IV. PROBLEM STATEMENT
Let xt denote the position at time t of a mobile robot

operating in a Euclidean domain D, which is assumed tame
(i.e., semi-algebraic). Let ut and zt respectively denote the
robot’s noisy control inputs and measurements. Adopting the
standard Bayesian approach, our objective is to compute the
probability of xt ∈ D conditioned upon the prior control and
current measurement. Recursively, it is expressed

P (xt|zt, ut) = ηP (zt|xt)P (xt|ut, xt−1) (2)

where η ∈ R+ is the standard normalization factor and
P (xt|ut, xt−1) represents the prior which is assumed ini-
tially uniform over the domain D.

Our objective in this research is to alleviate the need for
precise metric measurements to close the loop. As such, the
focus of our attention turns to the measurement likelihood
P (zt|xt) and how it may be computed without the agent hav-
ing anything other than the ability to sense/detect (in a binary
fashion) uniquely identifiable landmarks not appearing in a
metric map. Assuming such limited sensing capabilities, the
challenge in determining P (zt|xt) reduces to reinterpreting
zt in such a way that it can be used to measure some features
embedded within the map’s structure. In this case, we will
capture these features by computing local homology within
a simplicial nerve complex approximating our domain D.
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Fig. 1. A collection of observations (center, squares) register the presence of uniquely identifiable landmarks (center, circles) in a planar domain D via
our visibility-based model. The resulting dual complexes, the landmark complex KL (left) and the observation complex KO (right) approximate D using
two different vertex sets. Note the presence of two holes in the topological structures capture the presence of two large structures in the map (at its center).
Although the figures are drawn geometrically, no coordinate information is assumed or used in their construction.

Towards this end, we adopt the following assumptions:
(A1): The robot is given an unlabeled metric map which

reflects the physical layout of D (e.g., building foot-
prints)

(A2): The robot is capable of measuring its own motions
(alternatively, it has knowledge of its motion model).

(A3): The robot can locally sense/detect from a collection
of uniquely identifiable landmarks L. The landmarks’
position is unknown to the robot.

(A4): A collection of labeled observations O are taken by
the robot as it moves through the environment. The
position at which observations are taken is unknown
to the robot.

(A5): The ability of the robot to detect landmarks is encoded
as a relation R ⊂ O × L, in which (α, i) ∈ R iff
observation α ∈ O detects landmark i ∈ L.

A point of discussion should be assumptions (A3) and
(A5), which defines our sensor model in terms of a sensing
relationship between observations and the landmarks they
see. The generality of this model should not go overlooked
as it can be extended to include directional modalities as
well. The interested reader is referred to our technical article
[30] for additional details.

V. A MULTI-PHASE SOLUTION

Our solution to the problem outlined in IV comes in
the form of a multi-phase (pipelined) localization algorithm
defined by two key processes: 1) Building a metric-free topo-
logical map, KL, which we represent using our simplicial
nerve constructs to approximate the structure of D; and 2)
Coupling KL with a metric map of the robot’s operating
environment to enable Monte Carlo Localization (MCL) with
local homological sensing.

Algorithm 1 presents our localization pipeline. As stated,
the first step (Line 2) in this process is to iteratively build a
landmark complex by taking a number of local observations
as the robot navigates the environment’s free space. This step
is metric free and does not require time sequencing. During
the second phase, the robot initializes a fixed-size set of
random particles and begins the main filtering loop using KL
andM. The key components of the measurement update are
given by Lines 8 and 11, which make use of two separate
radii: rpseudo and rgeo. The latter is used to define our local

homology neighborhood within the metric-map M. As a
result it is used for generating the hypothetical measurements
for each particle (Line 11, to be discussed shortly). The
former is used to loosely couple the simplicial complex with
a pseudo-metric approximation to the geodetic bound rgeo
to enable the robot to identify its local neighborhood in KL.

We now elaborate upon each of these points as we
next examine the key phases of Algorithm 1. Notably, the
algorithms stated in Lines 2, 8 and 11.

Algorithm 1: runTopologicalMCL
Input : Unlabeled metric map, M

Num. of particles, numParts ∈ Z+

Num. of observations, numObs ∈ Z+

Pseudo-metric radius, rpseudo ∈ R+

Geodetic radius, rgeo ∈ R+

1 begin
// Phase I: Generate Map

2 KL ← buildLandmarkComplex(numObs);
// Phase II: Localize Robot

3 xt−1 ← x0;
4 P ← initRandParticles(M, numParts);
5 for t← 1 to ∞ do

// Motion Update:
6 xt ← moveRobot(xt−1);
7 ût ← senseRobotMotion(xt, xt−1);

// Measurement Update:
8 χ← senseLocalHomology(KL, rpseudo);
9 foreach Particle pi = (xpi , wpi) ∈ P do

10 xpi ← moveParticle(ût, xpi);
11 χpi ← getLocHomology(pi,M, rgeo);
12 wpi ← getParticleWeight(χ, χpi);

13 P ← resampleParticlesByWeight(P);

A. Phase I: Building a Topological Map

To approximate our domain D, we leverage the notion
of dual landmark and observation complexes (see Figure
1), which we first presented in [30]. Although we may use
either nerve construct as the simplicial representation of our
map, for the purposes of this discussion, we focus upon
landmark complexes with the understanding that both are
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homologically equivalent and refer the interested reader to
[30]. We define the landmark complex:

Landmark Complex: The nerve of the cover of O by
subsets Ri = {α ∈ O : (α, i) ∈ R}, whose k-simplices
are all collections of (k + 1) distinct landmarks witnessed
by some observation α. It is denoted KL.

According to this definition, only those landmarks that
are observed participate in the landmark complex; hence it
is incorrect to say that, e.g., KL is a simplicial complex
with vertex set L, though it is the case when each landmark
is observed. Such are the caveats of working with abstract
simplicial complexes: we emphasize the difference between
the abstract landmarks and their geometric representations,
|L| ⊂ D, within the workspace. Figure 1 illustrates this
construct. Note that there is a corresponding geometric
realization of the nerve complex KL which has a more
direct connection to the problems of mapping and navigation,
which is beyond the scope of this effort.

Towards solidifying this definition, refer to Figure 1 (Left)
which depicts KL for the environment illustrated in Figure 1
(Center). The observation points (denoted as colored squares)
can be interpreted as the robot’s location at some point in
time where it has identified some set of landmarks. We see
that at the lower-leftmost observation point in the center
figure (i.e., the blue square), the robot detects six landmarks
as indicated by the edges between said observation point and
those landmarks (circles). As such, a 5-simplex is introduced
into KL. This 5-simplex is geometrically depicted as the
simplex on the lower-left (purple) in Figure 1 (Left).

As it turns out, the definition of the landmark complex
readily lends itself to constructing a topological approxima-
tion of the free-space under a sufficient number of observa-
tions. Intuitively, as the robot drives around via a random
walk or some other motion model, it uses its visibility-
based, binary, sensing capability to make observations of
visible landmarks. If the robot sees k+1 landmarks, denoted
as the set ` herein, at a particular observation point, it
simply introduces a k-simplex into KL with vertices (i.e.,
0-simplices) corresponding to those landmark identifiers.

Algorithm 2: buildLandmarkComplex
Input : numObs ∈ Z+

Output: Landmark Complex KL
1 begin
2 xt ← x0;
3 KL = ∅;
4 for i← 1 to numObs do
5 `← getV isibleLandmarkIDs(xt);
6 σ` ← createNewSimplex(`);
7 KL ← KL ∪ σ`;
8 xt ← moveToNewLocation(xt);

Algorithm 2 presents a formal statement of the iterative
process. Although the algorithm references the robot’s state,

xt, the robot is assumed to have no knowledge of xt, and
its inclusion is solely for the purposes of clarity. Note that
this Algorithm does not require the robot to have knowledge
of metric information regarding itself or the landmarks.
Furthermore, it does not require any reference to time to
sequence the robot’s observations. In fact, with only slight
modification, Algorithm 2 may be made fully distributed
provided the robots involved assign consistent identifiers
between viewed landmarks (note that in the SSID case, no
consistency check, i.e. data association, is necessary since
landmarks broadcast their unique identifiers). Such are the
advantages of leveraging topological tools.

B. Phase II: MCL with Homological Measurements

Since the prediction step in our formulation (i.e., Lines 6
and 7 in Algorithm 1) is standard, being either driven by an
onboard IMU or a known motion model, we opt to focus
instead on enabling the correction (i.e. the measurement
update) for loop closure. The measurement update is driven
by two key components: 1) the actual measurement taken
by the robot (Line 8) and 2) the hypothetical (or expected)
measurements for each of the particles reflecting a feasible
state (Line 11). For the sake of brevity, we restrict our
discussion of Phase II to the process of generating both the
actual and hypothetical measurements and refer the interested
reader to [19] for a proper treatment of particle filtering.

Herein, we consider a standard SIR (Sample Importance
Resampling) particle filter over the robot’s state space (i.e.,
its location in D). Our choice of a non-parametric Bayesian
filter is driven by the realization that homological sensing is
inherently coarse and, thus, the posterior over robot positions
may exhibit multiple modes, and, in general, will be non-
Gaussian. Note that the structure of the posterior will heavily
depend upon the topological structure of the environment as
well as the density of landmarks.

A key advantage to our approach is that each hypothetical
measurement (see Line 11 in Algorithm 1) can be obtained
in O(1) time by using a simple lookup table generated
via a geometric preprocessing phase on the metric map,
M. Furthermore, the homological computations (Line 8,
Algorithm 1) required by the robot may also be efficiently
done (in-practice, under normal observation density) by
doing a simple summation over the simplices comprising
the subcomplex representing the robot’s local neighborhood
when xt ∈ R2.

1) Taking Local Homological Measurements: Given that
KL is built during Phase I (see Line 2 in Algorithm 1),
the robot may perform local homology computations by
first extracting the subcomplex of KL corresponding to its
local neighborhood. Since KL is constructed without explicit
metric measurements, the notion of neighborhood is not
readily defined on its structure. Fortunately, in our case,
the local sensing relationship (A3) reflecting our underlying
hardware capabilities enables us to exploit the fact that
the agent can only sense within some maximal range. As
such, we may couple the edges (i.e., 1-simplices) within
KL loosely with a metric scale by associating with each
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edge the maximum sensing range, smax ∈ R+ of the robot.
Note that smax need not be precise given the coarse nature
of our homological sensor model. Assuming the robot has
computed the shortest pairwise path between each landmark
pair2 in the 1-skeleton of KL, it may simply lookup and
“trace” the vertices along all the paths beginning in ` until
rpseudo is reached along each. The result of this process will
be a collection of vertices that may be used as “indices” to
extract the appropriate subcomplex of KL. We denote the
subcomplex capturing the robot’s local homology as K`.

This allows us to embed a coarse notion of locality within
KL without the need for precise landmark positions or high-
fidelity sensor calibrations. Ultimately though, it enables us
to use the kth-homology over local neighborhoods in KL to
count (or sense) the number of topological invariants within
the robot’s vicinity. Recall that computing the kth-homology
corresponds to computing the generators representing non-
reducible k-cycles within the local region of interest. For-
tunately, the field of computational homology provides a
number of methods to enable this computation [31]. Ad-
ditional recent techniques include spectral methods (using
Laplacians) [6] and discrete Morse theory [32].

2) Euler Characteristic: Though computable, Hk(K) can
be problematic, as the size of the complex can grow very
quickly where landmark density is sufficiently high. Further-
more, the full computation of homology provides very rich
information: more than is needed for our purposes. We can
more easily compute a reduced topological invariant — the
Euler characteristic — given by:

χ(K) =
∑
σ

(−1)dimσ =

∞∑
k=0

(−1)k dimCk .

The following well-known result is a trivial but useful
consequence of the fact the the Euler characteristic is also the
alternating sum of the dimensions of the homology groups:

Lemma 5.1 ([31]): For K a connected simplicial complex
that is homotopic to a subcomplex of the plane R2,

χ(K) = 1− dimH1(K) .

Use of the Euler characteristic is especially compelling
for connected planar subsets, as it completely characterizes
topological type via a simple simplex count. In what follows,
we assume the use of the Euler characteristic to classify local
landmark complexes to which, because they approximate
local planar regions, Lemma 5.1 applies.

Algorithm 3 formalizes the process of computing the local
homology within KL as an implicit function of the robot’s
location in D. The algorithm returns the number of holes or
invariants, χ` ∈ Z≥0, sensed in the local homology K`. Line
3 of the algorithm recovers the robot’s local subcomplex.
Finally, in Line 4, the number of local homological invariants
are computed giving the robot its measurement, χ`.

It should be noted that it is natural to restrict ourselves to
the Euler characteristic whenever operating in R2; however,

2This process may be readily done prior to starting the localization filter
in Algorithm 1

Algorithm 3: senseLocalHomology
Input : KL, rpseudo ∈ R+

Output: χ` ∈ Z≥0
1 begin
2 `← getV isibleLandmarkIDs();
3 K` ← getLocalSubcomplex(KL, `, rpseudo);
4 χ` ← χ(K`);

one may consider an alternate approach for higher dimen-
sional localization where Lemma 5.1 does not hold. In such
a case, local homology may be computed by analyzing the
spectrum of the combinatorial Laplacian associated with a
given simplicial complex K:

Lk = ∂Tk ∂k + ∂k+1∂
T
k+1 .

It is well-known that the dimensionality of the kernel of Lk
corresponds to the number of non-trivial generators in the
kth homology group [6]. The disadvantage of this approach
is the need to do a spectral decomposition, which, in general,
is computationally more expensive.

Fig. 2. Height maps corresponding to “near” (top) and “far” (bottom)
for downtown region of Hartford, CT comprised of 44 buildings/structures.
The maps ware generated using our geometric preprocessing algorithm for
computing the number of expected holes as a function of map position
by exploiting the robot’s visibility-based sensing model. Note that since
the maps are computed a priori, each particle in our filter can obtain its
hypothetical measurements using an O(1) table lookup.
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3) Generating Hypothetical Measurements: Accordingly,
we now turn our attention to the task of generating hypo-
thetical measurements for our set of particles. Assuming our
map,M, is comprised of a finite collection of polygons (e.g.,
perhaps corresponding to building structure footprints), the
task of computing a hypothetical measurement (Algorithm
1, Line 11) given a particular hypothesis (i.e., a particle)
reduces to identifying the polygons that lie fully within the
geodetic radii, rgeo defining the robot’s homological neigh-
borhood. These structures represent expected holes in the
landmark complex KL generated during Phase I. Exploiting
this realization, we can employ a geometric preprocessing
phase over M in which we consider a tessellation (or,
alternatively, random samples) of the map’s free space. If we
map each such observation or sample to the expected number
of holes/structures seen at that point, we can construct a
“height” (or elevation) map overM that reflects the local ho-
mology of the hypothesis. The advantage of computing this
map a priori is that it can be used as a lookup table enabling
each particle to obtain its hypothetical measurements in O(1)
time (e.g., by employing nearest neighbor interpolation).
Given the straightforward nature of this algorithm, we omit
a formal statement.

From an implementation standpoint, however, it should be
noted that we assume a polygon is represented as a set of
points given by a surface mesh over its comprising faces.
For example, in R2 this mesh corresponds to discretizing
the line segments comprising the edges of the polygon into
smaller segments. Given this data representation, determining
whether a polygon represents a likely topological invariant
in KL reduces to verifying that all such mesh points satisfy
the geodetic distance constraint.

VI. SIMULATION RESULTS

The proposed localization pipeline was implemented in
a Matlab-based simulation. In the scenario, a region of
downtown Hartford, Connecticut was selected. The metric
map was comprised of 44 buildings with various geometric
polygonal footprints. A total of 197 WiFi access points
serving as landmarks were placed within the environment.
The robot was charged with following a specified path along
the roadways in the map. In lieu of a motion model, the robot
was assumed outfitted with an IMU for its prediction step. Its
noise model was assumed additive Gaussian with σlinear =
10.0(m/s2) and σangular = 0.435(rads/sec2). A total of
8000 particles represented the prior/posterior distributions.
It should be noted that we have obtained similar results with
fewer samples.

Employing Algorithm 2 for Phase I results in the simplicial
nerve complex seen in Figure 3 (Center). Although not
necessary, in this particular instance, we assume O = L
thereby reducing the complexity of certain aspects of our
implementation. Given the sufficient number of samples, we
see that in this case KL faithfully captures the topology of
D. In addition to the metric map, which corresponds to the
unlabeled map depicting building footprints, KL is fed as
input into Phase II.

Given the coarse nature of the homological sensing modal-
ity, we decomposed the homological measurement z into
two separate components, znear and zfar, corresponding
to ‘near” and “far” local homologies. Given the choice of
sensor range, the number of scaled hops in the 1-skeleton
of KL defining the near neighborhood was 2, while the far
neighborhood was 3.

Since the agent is analyzing the local homology of KL,
it is possible for “phantom” holes to occur once the desired
neighborhood (a subcomplex) is extracted from the global
homological structure (i.e., a hole may be introduced that
does not correspond to a physical structure in the map).
Conversely, some structures in the map (depending upon
the visibility-based sensing modality of the agent) may
not necessarily introduce topological features in KL. Such
artifacts may be considered a form of topological noise.

For the purposes of discussion, we consider a standard
additive model ẑt = zt + εt to capture this noise and define
our likelihood function as the product of terms

P (zt|xt) = P (zneart |xt)P (zfart |xt)

where, again, P (zt|xt) reflects the probability of measure-
ment zt at location xt at time t. Although a discrete distri-
bution may be used, for the purposes of our simulations, we
chose εt = N(µt, σ

2
t ) with inflated covariance to mitigate

the disparity introduced by measuring only values of Z+.
A complete characterization of a noise model is the focus
of ongoing research; however, even with this simple model,
results were very satisfactory.

Figure 3 shows the evolution of our particle filter with
homological sensing for loop closure. Going from top to
bottom, each row of images represents a snapshot of our
filter with respect to time. The left most figure shows the
geometric realization of the environmental landmarks. Land-
marks sensed at a particular instance are indicated via squares
with landmarks respectively belonging to the “near” and
“far” neighborhoods, as determined by our pseudo-metric,
being color-coded. The coordinate-free landmark complex is
shown center with near and far local homology regions color-
coded to match the geometric realization of the landmarks
appearing in the left most figure. The right figure shows the
approximated posterior given by the particle filter.

Figure 4 shows the absolute error of the homological
measurements for the duration of the simulation shown in
Figure 3. Note that despite substantial homological errors
(on the order of 8 holes at one point), the algorithm still
converges as shown in Figure 3 (Right).

VII. CONCLUSION

In this paper we have proposed a novel filtering approach
that enables a mobile robot to localize leveraging binary
information, in the form of SSIDs from WiFi access points,
and fuse it with information from an IMU and a unlabeled
map of the environment. We show that, despite the fact the
uniquely identifiable features may have unknown positions
(such as WiFi access points), it is possible to leverage such
binary information for Monte-Carlo localization. In particular
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Fig. 3. MCL with homological sensing over downtown Hartford, CT [33] with 44 buildings and 197 simulated WiFi APs serving as landmarks (Top-to-
Bottom, Left) - Squares: Visible landmarks used by robot to interrogate local homology within KL; Red +’s: Landmarks in “far” neighborhood; Yellow +’s:
Landmarks in “near” neighborhood; (Top-to-Bottom, Center) - Landmark complex/topological map shown with near/far homology regions as determined
by visible landmarks in (Top-to-Bottom, Left); (Top-to-Bottom, Right) The evolution of the posterior over the robot’s state space shown with environmental
structures as polygons. Loop closure was achieved using only the coordinate-free, homological sensing of said structures. The robot has no knowledge of
landmark coordinates, and it uses only a binary, visibility-based model for uniquely identifying landmarks before interrogating the local homology of KL.
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Fig. 4. Absolute error for homological measurements (z = [znear, zfar])
corresponding to the simulation in Figure 3. The ground truth for a particular
location was determined using the results of geometric preprocessing
algorithm with linear interpolation between sample points. As shown in Fig.
3 (Right), the filter still converges to a reasonable estimate of the robot’s
position.

we show that the binary information can be fused to build
a topological map that is consistent with the underlying ge-
ometric environment map. The mobile robot can interrogate
the topological map through local homology computation
and obtain the number of holes in the topological map. This
can be efficiently correlated with the underlying geometric
map to provide the likelihood position of the mobile robot.

The main advantage of the proposed approach is two-fold.
On one side, it enables minimalistic localization and on the
other it shows how it is possible to fuse efficiently highly
coarse/quantized information within a Monte-Carlo filter.

As future work we plan to pursue a more quantitative
characterization of the properties of such methodology. It
is clear that the accuracy of the topological map (in term
of hole-to-building correspondence) strongly depend upon
the density of the landmarks (e.g., WiFi access points) and
the size of the holes/buildings. In this context some recent
results developed at the interface between signal processing
and algebraic topology [15] will be instrumental to pursue
this analysis. We also plan to study more precisely the effect
of noise on the performance. Although we already showed
that persistent homology can be used to remove/reduce the
effect of noise at the topological level, see [30], its effect on
Monte-Carlo localization requires further investigation.
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