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Abstract— This paper considers the problem of planning a
path for an autonomous vehicle from a start to a goal location
in presence of sensor intermittency modeled as a stochastic
process, in addition to process and measurement noise. The aim
is to plan a path that minimizes the localizational uncertainty
for the vehicle upon arriving at the goal location. The main
contribution of this paper is two-fold. We first show that it
is possible to obtain an analytical bound on the performance
of a state estimator under sensor misdetection (intermittency)
occurring stochastically over time. We then use this bound in a
sample-based path planning algorithm to produce a path that
trades off accuracy and robustness. This extends the recent
body of work on planning under uncertainty to include the
fact that sensors may not provide any measurement owing to
misdetection. This is caused either by adverse environmental
conditions that prevent the sensors from making measurements
or by the fundamental limitations of the sensors. Examples
include RF-based ranging devices that intermittently do not
receive the signal from beacons because of obstacles or the
misdetection of features by a camera system in detrimental
lighting conditions. Computational results demonstrate the
benefit of the approach and comparisons are made with the
state of the art in path planning in belief space.

Index Terms— Path planning, Belief space planning, Au-
tonomous systems, Localization.

I. INTRODUCTION

Map-based, GPS-denied navigation often relies on the
measurement of environmental features to perform state
estimation. Whether these features are extracted from camera
or LIDAR data, or supplied by range beacons, their measure-
ment will be corrupted by noise and, in general, intermittent.
Examples of such situations include RF-based ranging de-
vices that intermittently do not receive signals from beacons
because of obstacles and misdetection of features by a
camera system in textureless areas of the environment and/or
due to adverse lighting conditions. Although sensor fusion
can mitigate the intermittency, it is clear that one would like
the vehicle to navigate in regions of the environment where
the intermittency is lower and/or where it is more likely
that a large number of sensors are producing measurements.
As prior maps are becoming increasingly rich and sensor-
environment interactions can be simulated with reasonable
fidelity, one can argue that a model for the intermittency
process may be available. Also, subsets of data collected in
various environmental situations can provide data to infer
model parameters.

In this context, the main contribution of this paper is
twofold. We first show that it is possible to obtain an
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analytical bound on the performance of a state estimator
under sensor misdetection occurring stochastically over time.
We then use this bound in a sample-based path planning
algorithm to produce a path that trades off accuracy and
robustness.

Recent work in robotics has emphasized robust path
planning under various sources of uncertainty. The stochas-
tic motion roadmap is a foundational work in modeling
path planning under process noise as a Markov decision
process (MDP), which is solved optimally using dynamic
programming [1]. Using the framework of Partially Observ-
able Markov Decision Processes (POMDP), Marthi, in [2]
addresses path planning in environments in which obstacles
appear/disappear dynamically over time.

If stochastic measurements are considered in addition to
actions, the planning problem, also a POMDP, is intractable
for relevant problems in robotics. As a result, a variety of al-
gorithms make simplifying assumptions and find high-quality
feasible paths that manage uncertainty. Sample-based motion
planning is often utilized to generate a set of collision-free
feasible paths from which a minimum-uncertainty path is
selected. The belief roadmap (BRM) [3] builds a probabilistic
roadmap (PRM) [4] in a robot’s state space, propagates
beliefs over the roadmap using an extended Kalman filter
(EKF) [5], and plans a path of minimum goal-state uncer-
tainty. This approach has been extended in [6] to bias the
PRM samples using a Sensory Uncertainty Field (SUF) [7],
which expresses the spatial variation in sensor performance
over the workspace. Rapidly-exploring random belief trees
(RRBTs) [8] use the EKF to propagate belief states over a
rapidly-exploring random graph (RRG) [9], to find asymptot-
ically optimal paths that minimize goal-state uncertainty sub-
ject to chance constraints. Linear quadratic Gaussian motion
planning (LQG-MP) [10] pairs an LQG controller-estimator
duo with trajectories planned using rapidly-exploring random
trees (RRTs) [11], seeking a path that minimizes the product
of collision probabilities at all states. Instead of sample-
based planning, continuous optimization is used by Platt et
al. [12]; locally optimal paths are computed directly in belief
space under the assumption that the maximum-likelihood
measurement is always obtained, and LQG estimation and
control are applied.

Map uncertainty is combined with assumptions of uncer-
tain actions and measurements by Kurniawati et al. [13], who
use a point-based POMDP planner to obtain an approximate
minimum-cost solution, where the cost is a combination
of movement and collision risk. A hierarchical approach is
adopted by Vitus et al. [14], who manage uncertainty by
decomposing the workspace into a graph and optimizing over



the graph in several steps. Wellman et al. [15] consider a
setting in which the edge costs on the graph are uncertain
and provide a path planning algorithm that produces optimal
paths under time-dependent uncertainty. Acar et al. [16]
present an approach that uses geometric and topological
features instead of sensor uncertainty models.

In total, we consider three sources of uncertainty: process
noise, sensor noise, and sensor intermittency, for which
sensor misdetections occur with a known probability. We
demonstrate that choosing the expected maximum eigen-
value of the error covariance matrix as a metric we can
obtain a novel upper bound on its evolution in the case
of stochastic misdetections by the robot’s sensors. In the
case of no misdetection, these bounds are distinct from
existing results in the literature, surveyed in [17], which are
mainly for the Algebraic Riccati equation, representing the
steady state value of the expected error covariance instead
of its instantaneous value that we are concerned with. Other
metrics, such as the trace of the expected error covariance
matrix, have been commonly considered in the past, cf. [3].
However, to the best of our knowledge, the trace does not
offer a tractable means to bound its evolution over time in the
stochastic setting of sensor misdetections. Although the max-
imum eigenvalue introduces conservativeness, the proposed
analytical bound (scalar) offers computational advantages,
especially when the search space is large.

This paper is organized as follows. In Section II, we for-
mulate the problem. An analytical bound on the performance
of the state estimator with probabilistic sensor misdetections
is derived in Section III. In Section IV, we describe in detail
how the analytical bound is used for robust path planning.
Computational results are reported in Section V. Finally,
conclusions and future directions are discussed in Section VI.

II. PROBLEM FORMULATION

We consider a general model of an agent whose state
evolves as per a non-linear discrete-time dynamical system

x(t+ 1) = f(x(t),n(t)), (1)

where x ∈ Rnx is the state describing the system at time
t, f : Rnx × Rnn → Rnx describes the state transition map
of the system and n ∈ Rnn is the process noise. The agent
is equipped with m sensors (alternatively, can distinguish
between information received from m different sources) in
order to estimate the state x. Sensor output is modeled as

yj(t) = hj(x(t),vj(t)), ∀j ∈ {1, . . . ,m}, (2)

where vj ∈ Rnj is the measurement noise of the j-th sensor
and h : Rnx × Rnj → Rnyj describes the relation between
state and measurement. We assume that the noise vectors n
and vj are independent mean-zero Gaussian random vectors.

In this paper, we consider situations where sensors can
misdetect features and thus, do not produce a measurement
at certain time instants. Examples include RF-based signals
from beacons that are not detected by the agent because of
low SNR, misdetection of features using cameras because of
abrupt change of lighting conditions, no LIDAR returns from

certain materials, etc. Under these circumstances, analogous
to the Kalman Filter case (see equations (185) and (186)
in [18]), an Extended Kalman Filter (EKF) based estimator
of the state x can be written as:

P−1t+1 = (FtPtF
′
t + Qt)

−1 +

m∑
j=1

γj,t+1H
′
jR
−1
j,t+1Hj , (3)

x̂t+1 = Pt+1

(
(FtPtF

′
t + Qt)

−1f(x̂t,0)+

+

m∑
j=1

γj,t+1H
′
jR
−1
j,t+1(yj(t+ 1)− hj(f(x̂t),0))

)
,

where x̂t is the state estimate, Pt is the error covariance
with respect to the process and sensor noise terms, Ft is the
linearization of f around (x̂t,0) and Hj is the linearization
of hj around (f(x̂t),0). The matrix Qt is the process
noise covariance and the Rj,t+1 is the measurement noise
covariance associated with the j-th sensor. The γj,t+1 are
binary, 0/1, random variables that model the misdetection
process for the j-th sensor at time t+ 1.

Our goal is to build a novel BRM that trades off accuracy
and robustness when sensors can stochastically be in mis-
detection mode during the mission. We will call this Robust
Belief Roadmap or RBRM.

In this work, we make the following assumptions:
Assumption 2.1 (Misdetection map): For each sensor j,

we can characterize the misdetection probability (1 − pj)
at locations in the environment. �

Note that we are not requiring the knowledge of the pj’s for
all sensors at every location in the environment. If this is not
known for certain regions of the environment or for certain
sensors, one either assume pj < 1 (increasingly pessimistic
as pj decreases) or pj = 1 (optimistic).

Assumption 2.2 (Independence): We assume the misde-
tections γj to be independent over time and between sensors.
Specifically, the γj are Bernoulli random variables with pj
being the probability of γj = 1. �

For constant values of pj’s, Assumption 2.2 is common in the
literature pertaining to the research area involving estimation
with intermittent observations, e.g., see [19]. However, most
results in this field are concerned with stability of the
estimation algorithms, while our focus in this paper is to
characterize the evolution of the estimation performance.
Further, in our set-up, the parameters pj of the random
variables γj,t in (3) are functions of the state x, whereas in
estimation literature, the state dependence is not explicitly
considered for the sake of notational brevity.

Assumption 2.3 (Consistency): We assume that the state
estimate x̂t follows the nominal trajectory for the vehicle. �

The last assumption implies that we have a reasonable
nominal model for the motion of the vehicle, and that there
exists a control action that keeps the state estimate x̂t close
to the nominal trajectory (c.f. [3]). Our work is concerned
with the level of confidence measured through Pt that we
can obtain in our state estimate x̂t.

With these assumptions, we address the following:



Fig. 1. Illustration of a model of the environment which could be
used for planning. In this case, not only is the geometric information
about the obstacles and position of beacons is considered, but also the
information about the reliability of certain sensors in detecting, e.g. edges
of buildings and signal from a radio tower (beacon). Note that in this
scenario a rather elaborate model is used, where edges are categorized
into three classes: detectable, detectable with 85% and 60% probability.
This different detection likelihood could be caused by the sun’s position. A
map of signal strength from the radio tower could be determined using ray
tracing algorithms. In this example, just for illustration purposes, we have
three regions with different detection probabilities.

Problem 2.1: Given the sensors’ precision, their misdetec-
tion probabilities and a nominal trajectory, determine a bound
on the evolution of the expected value of M(Pt), where
M represents any function that can capture the uncertainty
through Pt. Here, the expectation is taken over the joint
distribution of the random variables γj,t representing sensor
misdetection. �
Equipped with this theoretical bound, the second goal is to
apply the bound to the following problem on path planning
under uncertainty.

Problem 2.2: Given a set of candidate trajectories from a
start location to a goal location, develop an algorithm that
propagates the bound on E[M(Pt)] over the PRM, to output
a path having minimum goal-state uncertainty. �

Remark 2.1: The probability of misdetection of a sensor
(Assumption 2.1) is in general difficult to know precisely.
However, thanks to rather realistic simulation environments
capable of both simulating sensor responses as well as the
environment, one can foresee the possibility of obtaining
rather realistic models. For example, given a geometric
model of the environment, edges and/or corners of buildings
could be marked with different misdetection probabilities if
some information from the type of material, the texture,
the time of the day the mission is carried out, etc. are
considered. Entire areas of the environment could be marked
with misdetection probabilities, e.g., modeling the fact that
an RF-signal cannot easily be detected behind buildings. This
could be obtained with ray tracing based algorithms, see, e.g.,

Figure 1.
The misdetection probability of a sensor could also be

determined from historical data collected in the mission,
for example correlating some information about the environ-
ment, such as obstacle density, time of the day the mission
was carried out, etc. with the misdetection state of a sensor.

Of course, it is impossible to capture all sources of
uncertainty. However, if some of this information is available,
the RBRM method can take it into consideration, trading off
accuracy and robustness.

When such models are only of qualitative nature, the
RBRM could be used to assess the robustness of the solution.
In practice, the misdetection probabilities can be employed
as user parameters. Varying such parameters, the user can
study how the RBRM changes under, e.g., more pessimistic
hypotheses on the behavior of certain sensors, having higher
misdetection probability in more remote regions of the
environment where more uncertainty is expected, etc. �

III. ANALYTICAL BOUND ON PERFORMANCE

In the seminal work by Prentice and Roy [3], it was
shown that if the covariance matrix is factorized as Pt =
BtC

−1
t , then the time evolution of the terms Bt,Ct is

linear. This enabled the authors to develop and demonstrate
a computationally efficient algorithm to compute a roadmap
that captures the estimation precision. The function M used
in [3] is the trace of the matrix. Leveraging the same
factorization, one arrives at the following equation:[

Bt

Ct

]
=

[
Ft QtF

−T
t

M(γt)Ft F−Tt + M(γt)QtF
−T
t

] [
Bt−1
Ct−1

]
(4)

where M(γt) =
∑m

j=1 γj,tH
′
jR
−1
j,tHj , which depends on

the stochastic variables γj,t. This can be thought as a transfer
function that maps the matrices Bt and Ct from one node of
the roadmap to the next [3]. In this stochastic setting, how-
ever, a direct application of the BRM proposed by Prentice
and Roy in [3] requires extensive Monte Carlo simulations
over all the variables γj,t. Even if the factorization provides
a faster computation of the covariance, the method becomes
very quickly intractable, especially if γj,t changes spatially.
See, e.g., the signal received from a radio tower as in
Figure 1.

A way to mitigate this is by taking the expectation with
respect to the γj,t, namely by computing E(Bt) and E(Ct).
This would enable us to compute an expected transfer
function between two nodes in the roadmap. However, note
that E(Pt) = E(BtC

−1
t ) 6= E(Bt)(E(Ct))

−1, thus prevent-
ing us from computing what the expected state covariance is
at each node of the roadmap.

In order to obtain a meaningful metric on the expected
error covariance, which captures the estimate precision when
there are sensor misdetections, and to have computational
tractability, we establish a bound on the largest eigenvalue
of the covariance. Intuitively, we are approximating the
uncertainty at each node of the roadmap with a ball whose
radius is the largest eigenvalue of the covariance, and we
determine a bound on this radius.



A. Bound under Stochastic Sensor Misdetections
In this section, we derive a bound on the expected max-

imum eigenvalue of the covariance under a misdetection
process as per Assumptions 2.1 and 2.2. The metric which
we analyze is E[λ̄(Pt)], where the expectation is taken over
the stochastic process of sensor misdetections.

For brevity, let `t := λ̄(Pt). For k ∈ {1, . . . ,m}, define:

a := λ̄2(F(x̂t)) , b := sup
t
λ̄(Qt),

ci1,...,ik := aλ
( k∑

j=1

H′ij ,tR
−1
ij ,t

Hij ,t

)
,

di1,...,ik := bci1,...,ik/a+ 1,

where a tuple i1, . . . , ik is a subset of {1, . . . ,m}.
Using this notation, we have the following recursion which

provides an upper bound on E[`t], referred to hereafter as
E[`t]. Due to lack of space, the proof of this result is included
in the appendix of [20][Proof of Theorem III.3].

Theorem 3.1 (Stochastic misdetections): Under Assump-
tions 2.1 and 2.2, at any given time instant t, E[`t] generated
as per the following recursion,

E[`t] = (aE[`t−1] + b)
(

(1− p1) . . . (1− pm)

+
p1(1− p2) . . . (1− pm)

c1E[`t−1] + d1
+ · · ·+ (1− p1)(1− p2) . . . pm

cmE[`t−1] + dm

+
p1p2 . . . (1− pm)

c12E[`t−1] + d12
+ · · ·+ (1− p1) . . . pm−1pm

cm−1,mE[`t−1] + dm−1,m
...

+
p1 . . . pm

c1,...,mE[`t−1] + d1,...,m

)
,

is an upper bound on E[`t]. �

This bound requires the enumeration of all of the 2m

possibilities of sensor combinations, and therefore, the com-
putational complexity scales undesirably with m. One way to
derive an efficient bound is to obtain a uniform lower bound
c̄ on each of the c’s. In that case, the common denominator
of the right hand side terms becomes c̄ E[`t−1] + d̄. The
recursion then simplifies to

E[`t] = (aE[`t−1] + b)

 m∏
j=1

qj +
1−

∏m
j=1 qj

c̄E[`t−1] + d̄

 ,

with qj = 1 − pj . This recursion can be evaluated along
similar lines to the proof of [20][Theorem III.2] to obtain a
E[`t] as a function of E[`0].

For certain types of sensor suites, one may be able to
derive a slightly conservative, but computationally efficient
upper bound which we report next.

Corollary 3.1 (Simplified bound): Under Assump-
tions 2.1 and 2.2, at any given time instant t, E[`t]
generated as per the following recursion,

E[`t] = (aE[`t−1]+b)

 m∏
j=1

qj +

m∑
j=1

pj

cjE[`t−1] + dj

 ,

is an upper bound on E[`t]. �

The proof is reported in [20]. The main advantage of this
bound is the computational efficiency as compared to the one
in Theorem 3.1. However, this bound requires at least one of
the sensors to have a strictly positive c value, and therefore,
may become too conservative. We will use Theorem 3.1 in
our proposed RBRM approach.

IV. APPLICATION TO PATH PLANNING MISSIONS

The upper bound on E[`t] given in Theorem 3.1 may be
used to plan paths of minimum expected goal-state uncer-
tainty in a manner similar to the belief roadmap algorithm
[3]. We will assume that a probabilistic roadmap with node
set N and edge set E is provided as input, along with
beliefs µ0 and µgoal defining a start state and goal state on
the roadmap. We also assume that for every node n ∈ N ,
the triple n = {µ,E[`], π} is stored, which contains the
belief, the eigenvalue bound, and the path π (beginning
at µ0) associated with this node. We refer to individual
members of the triple using the notation n[µ], n[E[`]], and
n[π]. Belief propagation and graph search proceeds similarly
to that of the standard BRM algorithm; E[`t] is propagated
according to the recursive inequality given in Theorem 3.1,
and is used in place of the nominal-trajectory expected error
covariance matrix that is propagated in the standard BRM.
We assume the bound is used to compute a transfer function
E[`]l = ζ(i, l,E[`]i), that takes as input the indices of an
edge ei,l in the roadmap, and the eigenvalue bound associated
with node ni. In the context of the graph search, we treat E[`]
independently of time, and assume that ni[E[`]] represents
the best-yet covariance eigenvalue bound identified at ni.
The search process is shown in Algorithm 1.

Algorithm 1 ngoal [π] = RBRM(µ0, µgoal,E[`]0, N,E)

for ei,l ∈ E do
ξ(i, l,E[`]i)← PropagateBound(ei,l)

end for
Q← n0 = {µ0,E[`]0, ∅}
while Q 6= ∅ do
ni ← Pop(Q)
for nl ∈ ei,l do

if nl /∈ ni [π] then
E[`]l ← ξ(i, l, ni[E[`]])

if E[`]l < nl[E[`]] then
nl ← {nl[µ],E[`]l, ni[π] ∪ nl}
Q← Push(Q,nl)

end if
end if

end for
end while
return ngoal[π]

The use of our proposed approach, i.e., propagation of
E[`t], provides us with a significant computational advantage
over existing methods such as [3]. If we were to use their
factorization from (4), then we would have to compute:



Fig. 2. Planned paths in a workspace populated with obstacles (measured by
laser) and UWB beacons. The robot receives the beacon measurements with
probability 0.1, and extracts obstacle corners from laser data with probability
0.9. At top, a path planned using `t as a performance metric, neglecting all
probabilistic sensor misdetections. At bottom, a path planned using E[`t] as
a performance metric, which considers the misdetection probability of each
sensor. The UWB beacons are queried at every measurement iteration; the
laser has a range of one unit and its planned measurements are rendered
(green for a successful measurement and red for a misdetection) for a
representative failure scenario. Ninety-five percent confidence covariance
ellipses are plotted at regular intervals along each path.

1) 2m realizations of the matrix Bt (one for each subset
of misdetecting sensors), 2) inverses of 2m realizations of
the matrix Ct, 3) multiply each realization of Bt with
corresponding C−1t and finally, 4) sum up the 2m terms to
compute E[Pt] or its trace. Instead, our approach requires the
computation of minimum eigenvalues of 2m much smaller
sized matrices, i.e., sums of the terms H′jR

−1
j,tHj , for which

efficient algorithms exist even for larger sizes [21], along
with step 4) of the above, which provides significant savings
in high dimensional state space.

V. COMPUTATIONAL RESULTS

In this section, we consider path planning with minimum
uncertainty under process noise, sensor noise, and proba-
bilistic misdetections for a planar Dubins vehicle [22] in
an environment populated with obstacles. We assume that a
robot is using three sensors for navigation: ultra-wideband
(UWB) range beacons, a laser rangefinder for measuring
obstacle vertices, and odometry that is subject to drift over
time. The beacons provide measurements throughout the
workspace, but their noise properties are assumed to vary
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Fig. 3. At top, the propagation in time of the eigenvalue performance
metrics over the paths in Figure 2. At bottom, tr(Pt) is also given for both
paths. All quantities except E[`t] represent the mean over one hundred
Monte Carlo trials in which different sequences of sensor misdetections
occur according to the prescribed probabilities.

as a function of distance to the robot1, according to

vj(t) ∼ N (0, σ(Dj(t))
2) , (5)

σ(Dj(t)) = αDj(t) + σ0 . (6)

The noise associated with the range measurement of beacon j
has a standard deviation that varies linearly in the Euclidean
distance Dj(t) between the robot and beacon j. The standard
deviation takes on value σ0 at range zero and increases
according to the coefficient α. For the laser rangefinder, we
assume the measurement of range to an obstacle vertex is
corrupted by Gaussian white noise with properties that do not
vary spatially, and the vertices measured are always correctly
associated with a prior map. The maximum range of the laser
is limited, however, and obstacles can only be detected in
close proximity to the robot.

A start state and goal state are designated for the robot,
and a PRM is used to identify feasible paths between the
start and goal. To select the path of minimum goal-state
uncertainty, two methodologies are compared: the original
BRM algorithm, with no notion of sensor misdetections, and
the proposed RBRM algorithm, which uses E[`t] as a cost
metric instead of tr(Pt). For all path planning scenarios
investigated, the standard BRM algorithm was found to
choose the same path regardless of whether tr(Pt) is used
as the cost metric or `t is used instead. Evaluating `t over
the roadmap offers a better comparison with E[`t], and so

1A more general model could also consider a bias term as described
in [3]. This could be easily added also in our framework.
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Fig. 4. Characteristics of a planned path are plotted as a function of
sensor reliability, for the two-sensor example shown in Figure 2. At top, the
covariance eigenvalue bound at the goal state is illustrated, and at bottom, the
number of planned laser measurements along the selected path is illustrated.
The upper left corner of each plot corresponds to the parametrization used
in Figures 2 and 3.

both tr(Pt) and `t are computed for comparison with E[`t]
in the results to follow.

The first scenario considered is illustrated in Figure 2, in
which a robot must plan from start to goal in a workspace
populated with three obstacles and four range beacons. Very
simple collision-free paths are evident through the upper
reaches of the workspace, but in cases where the probability
of UWB misdetection is high, it is advantageous for the robot
to travel through the obstacles to collect laser measurements
that reduce position uncertainty. For the specific case plotted
in Figure 2, the beacons have a ten percent probability of
delivering a successful measurement to the robot, and the
laser (with a maximum range of one unit) has a ninety
percent probability of successfully extracting an obstacle ver-
tex and measuring its range to the robot. When intermittent
sensing is neglected, the robot takes a short path to the goal
that collects measurements from the UWB beacons only.
When intermittent sensing is considered, the robot takes a
detour through the obstacles to reduce the uncertainty of
its state estimate. For both paths, one hundred Monte Carlo
simulations were performed in which sensors fail according
to the prescribed probabilities, and the resulting mean values
of tr(Pt) and `t are compared with E[`t] in Figure 3.

The same planning scenario is next considered over a
range of different misdetection probabilities, for both the
laser and the UWB beacons, and the results are summarized
in Figure 4. The number of planned laser measurements

in the minimum uncertainty path, computed using E[`t], is
given at top, and the value of E[`t] at each path’s goal state
is given at bottom. The zero-range noise level σ2

0 selected
for the UWB beacons is an order of magnitude lower than
the constant variance representing the laser noise, and so the
UWB beacons are used exclusively for all scenarios in which
they are more than fifty percent reliable, even if the laser is
more reliable. Note that Figure 4 can be also used when no
exact value of the misdetection probabilities is known, to
evaluate the characteristics of a PRM over an environment.
Note that to explore tradeoffs the proposed approach is very
efficient as the parameters a, b, ci1 , . . . , cik and di1 , . . . , dik
need to be computed only once, and after that we only need
to propagate a scalar metric across a PRM.

A second path planning test case with continuously vary-
ing sensor intermittency is considered in Figure 5. In a
workspace populated with eight obstacles and no UWB
beacons, we assume that a light source causes the expected
sensing intermittency to vary continuously along the vertical
axis of the workspace, with a high detection probability at
bottom and a low detection probability at top. Neglecting
sensor intermittency, the standard BRM algorithm plans
a path through the upper region of the workspace, and
considering sensor intermittency, planning with E[`t] yields a
path that collects many high-probability measurements from
the lower region of the workspace to minimize uncertainty
at the goal state. The candidate metrics, averaged over one
hundred simulated cases of sensor intermittency, are given
in Figure 6.

A final path planning test case is considered in Figure 7,
which plans over a square-kilometer urban environment
(from the city of Chicago) from a start state at bottom to
a goal state at top. We assume that sunlight is cast into
the environment from the upper right corner of the map,
interfering with the robot’s ability to detect features with a
laser in the sunlit areas. We assume that blue obstacle corners
in Figure 7, which lie in shaded areas, can be detected by
laser with 90% probability, and red obstacle corners, in sunlit
areas, can be detected with 10% probability. We believe that
this reflects a realistic application in which prior knowledge
can be applied to plan with increased robustness. We use
only two feature detection probabilities in this case to reflect
the fact that we may not know exactly how the reliability of
sensing will vary along a continuum.

Neglecting sensor intermittency, the standard BRM algo-
rithm plans a path that relies on many obstacle corners with
a low detection probability. Using E[`t] as a planning metric
instead, we obtain a path that collects measurement from the
highly reliable features exclusively. This path reaches the
goal state with superior uncertainty in the majority of test
cases, and is more robust in general due to its preference for
reliable features. The candidate metrics, again averaged over
one hundred simulated cases of sensor intermittency for this
example, are given in Figure 8.

Over the course of computational evaluations, we have
also observed that using E[`t] as an uncertainty metric for
planning, even in the absence of sensor misdetection, offers



Fig. 5. Planned paths in a workspace over which the probability of a
successful corner detection varies spatially along the vertical axis. Ob-
stacles measured at bottom have the highest probability of a successful
measurement, and obstacles measured at top have a near-zero probability of
a successful measurement. At top, a path planned using `t as a performance
metric, neglecting all probabilistic sensor misdetections. At bottom, a
path planned using E[`t] as a performance metric, which considers the
misdetection probability of each sensor. The laser has a range of one unit and
its planned measurements are rendered (green for a successful measurement
and red for a misdetection) for a representative scenario. Ninety-five percent
confidence covariance ellipses are plotted at regular intervals along each
path.

a competitive and computationally efficient alternative to
propagation of the full error covariance matrix. As Figure
8 indicates, the eigenvalue bound is not always tight when
the vehicle relies solely on odometry, and its state estimate
is subject to drift, but E[`t] offers a good approximation of
`t, which we believe is in turn a suitable proxy for tr(Pt).

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper described how to plan when sensors used for
state estimation are not only noisy, but may also fail to
produce measurements because of misdetections. Being able
to tradeoff both accuracy and robustness is very appealing as
autonomous vehicles heavily rely on complex sensors such as
cameras and LIDAR whose capability of extracting relevant
information, such as features and point clouds, strongly
depends on environmental information that can be predicted
to a certain extent, such as effect of lighting conditions, type
of surfaces, etc. Even in the case when such information is
not fully available, the proposed methodology can be very
beneficial to study the robustness of the path to intermittent
sensing, by testing the robust roadmap, for example, by
choosing various probabilities of intermittency at various
locations in the map.
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Fig. 6. At top, the propagation in time of the eigenvalue performance
metrics over the paths in Figure 5. At bottom, the trace of the expected
error covariance matrix is given for both paths. All quantities except the
eigenvalue bound represent the mean over one hundred Monte Carlo trials
in which different sequences of sensor misdetections occur according to the
prescribed probabilities.

One direction in which the framework proposed in this
paper needs to be matured is when uncertainty can be
tolerated in certain dimensions but not in others. These
scenarios arise in planning trajectories in high dimensional
robot configuration spaces. The goal is to develop extensions
of the current formulation and an analysis framework that can
inherently handle such preferred directions for uncertainty.
Other promising short term future directions include the in-
corporation of map uncertainty within the current framework
and the use of the current analysis for multi-objective path
planning.
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