
A CONTROL ARCHITECTURE FOR MULTIPLE
SUBMARINES IN COORDINATED SEARCH MISSIONS

João Borges de Sousa∗,1 Karl Henrik Johansson ∗∗,2

Alberto Speranzon∗∗,2 Jorge Silva∗∗∗,1

∗ Dept. de Engenharia Electrotécnica e Computadores
Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias, 4200-465, Porto, Portugal

E-mail: jtasso@fe.up.pt
∗∗ Dept. of Signals, Sensors & Systems

Royal Institute of Technology, SE-100 44 Stockholm, Sweden
E-mail: {kallej,albspe}@s3.kth.se

∗∗∗ Instituto Superior de Engenharia do Porto,
Rua Dr. Ant́onio Bernardino de Almeida, 431,

4200-072 Porto, Portugal

Abstract: A control architecture for executing multi-vehicle search algorithms is pre-
sented. The proposed hierarchical structure consists of three control layers, which consist
of maneuver controllers, vehicle supervisors, and team controllers. The system model is
described as a dynamic network of hybrid automata in the programming languageShift
and allows us to argue about specification, verification and dynamical properties in a
formal setting. The particular search problem that is studied is that of finding the minimum
of a scalar field using a team of autonomous underwater vehicles. As an illustration,
a coordination scheme based on the Nelder-Mead simplex optimization algorithm is
presented and illustrated through simulations.

Keywords: Hierarchical controllers, autonomous vehicles, hybrid systems, search
methods, simulation languages, supervision.

1. INTRODUCTION

The problem of coordinating the operations of multi-
ple autonomous underwater vehicles (AUV’s) in the
search for extremal points in oceanographic scalar
fields is addressed in the paper. The coordination en-
tails exchanging real-time information and commands

1 This research has been partly supported by Agência de Inovaç̃ao
under project PISCIS. The PISCIS (Multiple Autonomous Under-
water Vehicles for Coastal and Environmental Field Studies)project
concerns the design and implementation of a modular, advanced and
low-cost system for oceanographic data collection.
2 K. H. Johansson and A. Speranzon are partially supported by
the European Commission through the RECSYS and the RUNES
projects and the Swedish Research Council.

among vehicles and controllers whose roles, relative
positions, and dependencies change during operations.
There are several aspects to this problem: theorga-
nizationof valid configurations of vehicles and con-
trollers; thestructureof each specific configuration;
and thereconfigurationof these structures.

Our approach to the problem is to structure the system
into a control hierarchy, which consists of maneuver
controllers, vehicle supervisors, and team controllers.
The maneuver controllers implement elemental feed-
back control maneuvers for the AUV’s. Each AUV has
attached a vehicle supervisor, which makes decisions
on what maneuver to execute. The team controllers
run the multi-vehicle coordination algorithm, but also

Fig. 1. System specification

handles structural adaptation and reconfiguration for
the system of AUV’s. The controllers and their inter-
actions are described as interacting hybrid automata
using Shift, which is a programming language for
dynamic networks of hybrid automata (Deshpandeet
al., 1997).

The paper is organized as follows. In section 2 we in-
troduce the problem formulation and the system spec-
ification. In section 3 we describe the input–output
behavior of the components and how they interact as
a dynamic network of hybrid automata. In section 4
we describe the controllers and how they organize the
system and implement the reconfiguration strategies.
Section 5 describes some guaranteed team behavior.
The implementation of an optimization-based multi-
vehicle search strategy is presented in section 6 to-
gether with some simulation results. In the appendix
we present an aside on the Shift programming lan-
guage.

2. PROBLEM FORMULATION

We consider a class of search algorithms for multi-
vehicle systems that are characterized by (1) one, or
more, initial points inR3; (2) a measurement function
m : R

3 → R from locations in the 3-dimensional
space to measurements of a given scalar field; (3) a
sequenceL of visited locations and measurements;
(4) a way-point generation functiong : L → R

3,
which returns the next point to visit; and (5) a termina-
tion criteria. The multi-vehicle system has constrained
communication range and highly nonlinear dynamics.
Environmental constraints are given as bounded dis-
turbances in the equations of motion.

Let us describe the system specificationS. Given a
set ofn vehiclesV = {v1, . . . , vn}, we define the
systemΣ as beingV together with the controllers. The
specificationS for Σ that we consider in this paper is
depicted in figure 1. It is given by a hybrid automaton
that defines a class of search algorithms, and is further
described in the sequel. Execution proceeds in steps
as the search algorithm. The initial state iscoord. In

this state the vehicles inV exchange measurements
to evaluateg and to determine spatial–temporal ren-
dezvous points. In themotionstate the vehicles then
move to their designated rendezvous points. When
they reach these points, a transition to thecoord takes
place and a new step begins. In themotionstate it may
happen that the transition tocoord is not taken due
to a communication time-out. In this case a transition
to backtrackis taken. Inbacktrackthe vehicles move
to their previous locations at the end of the previous
coord state and attempt to re-start the algorithm. If
this is not possible, then a transition toind is taken. In
ind each vehicle executes its version of the algorithm
independently, without coordinating with the other ve-
hicles.

Problem 1.Given a multi-vehicle systemΣ and a
specification, derive the controllers, configurations,
and the reconfiguration strategies forΣ to execute the
specification with guaranteed properties, such as con-
tinuation, termination, bounded-time execution, ro-
bustness with respect to model disturbances and com-
munication constraints, and graceful degradation.

Here we take a variation of this problem. We introduce
a set of controllers, configurations and reconfiguration
strategies and prove that it implements the specifica-
tion with guaranteed properties.

3. COMPONENTS AND INTERACTIONS

3.1 Execution concepts

We use the concept of maneuver, a prototype of an
action description for a single vehicle, as the atomic
component of the execution control. Thus we abstract
each vehicle as a provider of maneuvers, which allows
for modular design and verification. The maneuvers
required to execute the search algorithm are only the
following goto and hold commands:

• goto(x, y, z,R, T): reach the ball of radiusR
centered at(x, y, z) within timeT ;

• hold(D): execute a holding pattern for timeD.

We will prove that the implementation of the specifica-
tion is as follows. At each step, there is a coordination
stage and a motion stage. In the coordination stage the
AUVs in V execute ahold maneuver and communi-
cate to evaluate the way-point generation functiong
and to generate spatial-temporal rendezvous points for
each of them. In the motion stage the vehicles execute
goto maneuvers to reach their designated rendezvous
points where a new coordination stage takes place.

We have structured our design in a 3-level control
hierarchy. Proceeding bottom-up there are the maneu-
ver controllers (one per type of maneuver), vehicle
supervisors (one per AUV), and the team controllers
(one per AUV). We describe it next. First, we describe

Fig. 2. Control hierarchies and links

the AUV model. Second, we describe the data models
for these controllers, which are modelled as hybrid
automata. Third, we describe the legal configurations
of input/output relations for the system.

3.2 AUV model

We have adopted the notation from the Society of
Naval Architects and Marine Engineers (SNAME)
(Lewis, 1989) for the equations of motion. It is con-
venient to consider two coordinate frames: body-fixed
and earth-fixed. The motions in the body-fixed frame
are described by 6 velocity componentsη respectively,
surge, sway, heave, roll, pitch, and yaw, relative to a
constant velocity coordinate frame moving with the
ocean current. The components of position and atti-
tude in the earth-fixed frame areν = (ν1, ν2) =
[x, y, z, φ, θ, ψ].

η̇ = f(t, η, ν, u, v), u(t) ∈ P (t), v(t) ∈ Q(t), (1)

where u is the control andv the disturbance, and
P (t) andQ(t) are closed sets inRm. We consider the
standard conditions for uniqueness and prolongability
of the solutions fort ≥ t0.

The Shifttype definition for the AUV model is

type AUV {
input /* what we feed to it */
array(number) u; // control settings
array(number) v; // disturbances

output /* what we see on the outside */
supervisor s; // link to supervisor
TeamController t; // link to team controller
number x,y,z; // motion state
array(number) ss; // state of all components
...

}

An instance of a type is called a component. We create
an instance of a type with acreate statement. In
the following example we create an instancev1 of
the AUV type with the output link variabless and
t bound to componentssup1 andtc1 respectively.
Link variables refer to other components.

v1 := create(AUV, s:=sup1, t:=tc1);

We access the output variables of v1 with the Shift
constructs(v1). Here, we have used the link tov1
to read the output variables. Shift allows the user to
change link variables. We use this feature to create and
maintain dynamic networks of hybrid automata. For
example, we can change the value of the link variable
t of v1 with the following constructt(v1):= tc2.
In this example this construct is used to change the
team controller ofv1. This way we are are to change
the input/output relations among components.

3.3 Controllers

3.3.1. Maneuver controller We use the object-
orientation of Shift to define a hierarchy of maneuver
controllers. At its root there is the elemental maneuver
typeMController. The other maneuver controllers
inherit from this one. Its Shift data model is

type MController {
input
array(number) ss; // state of all components
number x,y,z; // motion state
mspec m; // maneuver specification

output
array(number) u;// control settings for actuators
...

}

There may be several implementations for the same
type of maneuver. Again, we use inheritance to specify
the implementations of a maneuver type.

3.3.2. Vehicle supervisor The Shift data model for
the vehicle supervisor is

type supervisor {
input /* what we feed to it */
TeamController tc;// link to team controller

state /* whats internal */
MController mc; // link to maneuver controller
mspec mt;// current maneuver specification
array(number) ss;// state of all components
...

discrete /* discrete modes of behavior */
Exec, Error, Idle; // 3 discrete states

transition
Idle -> Exec {} ...
...

}

It interacts withtc through the exchange of the fol-
lowing input/output typed events:
In command(m) – execute maneuver specification
m.
In abort – abort current maneuver.
Out donev – completion of current maneuver.
Out errorv(ecode) – error of typeecode.

The typed events exchanged withmc are:
Out exec(m) – launch maneuver controller to exe-
cute maneuver specificationm.
In donev – maneuver reached completion.
In errorm(code) – error of typecode.

The transition system for this hybrid automaton is
briefly described next. In theIdle state, the supervi-

sor accepts a maneuver command,In command(m),
from the team controllertc, and takes the transition
to Exec. On this transition it creates aMController
namedc of type specified inm and sets the state
variablemc to c. The transition fromExecto Idle is
taken when an abort command is received fromtc,
or when aIn donev event is received fromc. On this
transition the state variablemc is set tonil.

3.3.3. Team controller EachAUV component has a
TeamController. The Shift skeleton is

type TeamController {
input
set(AUV) V; // AUVs in the team
supervisor s; // link to its supervisor

state
number step; // last step
number x,y,z; // (x, y, z) at last step
number T1, T2, T3; // coordination times
number c; // counts measurements

// received
array(array(number)) L;// visited locations
number t; // timer

output
TeamController m;// link to master TeamController
set(TeamController) tc;// links to TeamController
symbol role; // $master or $slave
symbol nstate; // name of discrete state

// $Init, $Error, $TMaster,
// $TSlave, $SingleN, $SingleI

mspec ms; // maneuver under execution
set(array(number)) specs; // target regions

discrete /* discrete modes of behavior */
Init, Error, TMaster, TSlave, SingleN, SingleI;
...

}

It interacts withtc through the exchange of the fol-
lowing input/output typed events:
Out command(m,T1, T2, T3) – execute a maneu-
ver specificationm with coordination times [T1, T2,
T3]
In measurement(m) – measurementm.

There are 6 discrete states. The last four,TMaster,
TSlave, SingleN, SingleI concern the exe-
cution of the search algorithm. In theTMaster state
it receives measurements from all vehicles inV, cal-
culates the next way-point, and sends out thegoto
maneuver specifications to the other vehicles through
the link tc. In TSlave it sends measurements to
the masterm and waits forgoto maneuver specifi-
cations fromms. In SingleN it executes thegoto
maneuver specification received from the master and,
upon its completion, it executes ahold maneuver.
In SingleI it executes agoto maneuver to the
positionx,y,z at the last step.

For each specific implementation we create several in-
stances of the controller and AUV types. For example,

v1:= create(AUV, s:=sup1, t:=tc1);
v2:= create(AUV, s:=sup2, t:=tc2);
V := {v1, v2};

The master and slave roles ofTeamController
can be changed during execution. In this imple-
mentation oneTeamController is initialized to
master and the others to slave and these roles do

not change. For example, the following construct
m:=self is used in the initialization of the master
TeamController.

3.4 Configurations

Links among components of typeTeamController
change while the system implements the specifica-
tion: in the motion state the vehicles are not re-
quired to communicate and these links may be non-
existent ornil; in the coord state the vehicles are
required to communicate and these links have to be
re-established.

We use the termconfiguration to denote a set of
components and links. This provides for a compact
notation to describe execution properties.

We need four configurations to execute the specifi-
cation:ccoord; cmotion; cbacktrack; andcind. These
configurations concern only team controller compo-
nents, which are represented by the dashed arrow in
figure 2.

Theccoordconfiguration is described next

∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = m(tc(v)) (2)

∧m(tc(v)) = tc(v)

∧tc(tc(v)) = {tc(v1), . . . , tc(vn)}

∧step(tc(v)) = step(tc(v))

∧nstate(tc(v)) = $Tmaster

∧nstate(tc(v)) = $TSlave

In ccoord there is a master team controller which
resides inv (it is the master of itself). In this con-
troller the value ofnstate isTmaster; in the other
controllers its value isTSlave. The link variablem
is set to the master. The master is linked to the other
controllers. The controllers are in the same step of the
master:step(tc(v)) = step(tc(v)). The vehicles in
V have to satisfy the communication constraints for
those links to exist.

In the cmotionconfiguration some of the links from
the ccoord configuration may not have been re-
moved.

∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = m(tc(v)) (3)

∧m(tc(v)) = tc(v)

∧step(tc(v)) = step(tc(v))

∧nstate(tc(v)) = $Tmaster

∧nstate(tc(v)) = $TSlave

The cbacktrackand cind configurations are defined
respectively as

∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = tc(v) (4)

∧step(tc(v)) = step(tc(v))

nstate(tc(v)) = $SingleN

∧nstate(tc(v)) = $SingleN

and

∀v ∈ V : m(tc(v)) = tc(v) ∧ (5)

nstate(tc(v)) = $SingleI

We remark thatconfiguration is a global concept.
We do not manipulate configurations directly in our
controllers. However, the controllers ensure that the
system alternates between thecoordination and the
motion configurations while executing the specifica-
tion (in the absence of faults). We describe how in the
following section.

4. EXECUTION CONTROL

Execution control commands vehicles and organizes
controllers to execute the specification in a distributed
fashion. The system implementation of a subset of the
specification automaton (normal execution when the
states alternate betweencoordandmove) is described
next.

4.1 Team controller

In this implementation the initial allocation of the
master and slave roles does not change. Hence, and
for the sake of simplicity, two independent transition
systems for each of the discrete statesTMaster,
TSlave are described separately. Consider those as
two distinct automata.

ConsiderTMaster and refer to figure 3 (the transi-
tions are labelled with guards and actions; the guards
are written in boldface; the arrows indicate the origins
or destinations of the events). When the system enters
a new step the counterc is set to zero and the co-
ordination timesT1, T2, T3 set to define the time
window for coordination. The master AUV is required
to reach its way-point during [T1, T2]. During [T2,
T3] it receives measurements from the other vehicles
and updates the counterc. Whenc=n it generates the
new set of way-points for each vehicle, the coordi-
nation times for the next step, increments thestep
counter, sends the new coordination timesT1, T2,
T3 to the AUV’s and commands them to execute the
correspondinggoto maneuvers.

ConsiderTSlave and refer to figure 4. It increments
the step counter and setsmode=$mc when it re-
ceives agoto command from the masterm during
[T2, T3]. It commands its supervisor to execute the
maneuver and waits for its completion message from

Fig. 3. Master mode operation

Fig. 4. Slave mode operation

the supervisor. When it receives the completion mes-
sage it setsmode=$hold and commands the super-
visor to execute ahold maneuver untilT2. Immedi-
ately after [T2] it sends the measurement taken at the
designated way-point to the master and waits for the
nextgoto command to arrive during [T2, T3].

4.2 goto maneuver controller

We consider one particular implementation of thegoto
maneuver. We use a differential games formulation
and the construction presented in (Krasovskii and Sub-
botin, 1988) to implement a controller which ensures
that the specification is executed under bounded dis-
turbances, or it returns an error upon initialization (see
(de Sousaet al., 2004) for an implementation).

The composition of these controllers results in an
implementation which satisfies the specification. This
is discussed next.

5. SYSTEM PROPERTIES

5.1 Definitions

In this section we discuss some guaranteed team
behavior. Consider the controlled motions of the

AUV given by equation (1). The backward reach set
W [τ, tα, tβ ,M] at time τ ≤ tα is the set of points
x = η ∈ R

6 such that there exists a controlu(t) that
drives the trajectory of the systemx[t] = x(t, τ, x)
from state(τ, x) to the target setM at some time
θ ∈ [tα, tβ].

Consider the systemΣ defined in section 3. We want
the system to satisfy the following properties.

• P1 (Continuation): normal execution does not
block, i.e., the target sets generated at each step
are reachable and the vehicles are able to ex-
change coordination information at the end of the
step to proceed to the next step. The target sets
are specified in terms of way-points, radius, and
time window.

• P2 (Termination): execution terminates in a finite
number of steps if the algorithm terminates in a
finite number of steps.

• P3 (Reconfiguration): normal execution contin-
ues if all vehicles inV are able to backtrack to
the previous step and the system is able to resume
execution.

• P4 (Fault-handling): execution continues if there
exists at least one vehicle inV after a failed
attempt to reconfigure the system.

We now prove that the first of these properties holds
for the implementation.

5.2 Guaranteed team behavior

ConsiderMi,j , Xi,j , τi,j , and [T1, T2], designate
respectively the target set, the initial position, the
initial time, and the time window at stepj for vehicle
i (Mi,j = h(specs)).

Theorem 1.Property P1 holds for a system imple-
mentation in which the following conditions are true:
i) configuration(τi,j) = ccoord, where the function
configuration(s) returns the configuration of the
system at times.
ii) ∀i ∈ V : Xi,j ∈W [τi,j , T1, T2,Mi,j].
iii) configuration(t) = ccoord, t ∈ [T2, Tf] for
someT2 ≤ Tf ≤ T3.
iv) the implementation does not block.

Condition i) means that the configuration of the sys-
tem is such that communication was possible and that
TMaster andTSlave are in the samestep. Condi-
tions ii) and iii) mean that the target sets are reachable
and that the communication constraints are satisfied.

Consider a way-point generation functiong, which
satisfies the following properties: (a) it generates
reachable target sets; and (b) for all points in the target
sets the communication constraints are valid.

Fig. 5. A triangular grid with apertured over a scalar
field m depicted through its level curves. The
solid line triangle illustrates the simplex location,
which evolves on the grid.

Theorem 2.Conditions (i)-(vi) in theorem 1 are satis-
fied by the controllers described in section 4 and by
the way-point generation functiong.

Conditions i) and ii) result from the application of
g. Condition iii) results the properties of thegoto
controller. Condition iv) follows from the structure of
TMaster andTSlave.

The transitions in the specification automaton corre-
spond to the transitions inTMaster. Under the last
theorem the control hierarchy implements the specifi-
cation.

Space limitations preclude discussion of properties
P2–P4.

6. SIMPLEX ALGORITHM IMPLEMENTATION

In this section we describe how the team controller
can execute the Nelder-Mead simplex optimization
algorithm, which is a direct search method used in
many practical optimization problems. The method is
suitable for coordinating a team of AUV’s to localize a
minimum of a scalar field in the plane. It behaves like
a gradient descent method, even if no explicit gradient
calculation is needed. The points generated by the
simplex algorithm correspond to the target regions of
the team controller. Following the presentation of the
simplex implementation, we present numerical simu-
lations illustrating the approach in a realistic setting.

6.1 Simplex implementation

Let us introduce the simplex optimziation algorithm (Nelder
and Mead, 1965). Consider a compact convex set
Ω ⊂ R

2 containing the origin. Define a field through
a scalar-valued measurement mapm : Ω → R and
a triangular gridG ∈ Ω as depicted in Figure 5, with
apertured > 0.

Introduce an arbitrary pointp0 ∈ Ω◦ and a base of
vectors given byb1, b2 such thatbT

1
b1 = bT

2
b2 = d2

andbT
1
b2 = d2 cosπ/3. The grid is then given by

G = {p ∈ Ω| p = p0 + kb1 + ℓb2, k, ℓ ∈ Z}.

0 100 200 300 400 500
−50

0

50

100

150

200

250

300

(a) Situation after 6 time steps.

0 100 200 300 400 500
−50

0

50

100

150

200

250

300

(b) Situation after 12 time steps.

0 100 200 300 400 500
−50

0

50

100

150

200

250

300

(c) Situation after 18 time steps.

0 100 200 300 400 500
−50

0

50

100

150

200

250

300

(d) Situation after 24 time steps.

Fig. 6. Simplex coordination algorithm executing a search in a noisy quadratic field with drift.

A simplex z = (z1, z2, z3) ∈ G3 is then defined by
three neighboring vertices inG. We suppose, without
loss of generality, thatV (z3) ≥ V (zi), i = 1, 2. Given
a simplexz = (z1, z2, z3) the next simplex,z′, is then
generated fromz by reflectingz3 with respect to the
other vertices, i.e., it is given by the mapping

z 7→ z′ = f(z) = (z1, z3, z1 + z2 − z3). (6)

The mapf defines the way-point generation function
g : L → R

3 of the team controller, as described in
the sequel. Consider a case with two AUV’s:v1 and
v2. (It is easy to incorporate more vehicles.) Suppose
the team controller ofv1 will control bothv1 andv2,
so we have the following assignments according to the
definition ofTeamController:

role(tc1(v1)):=$master;
role(tc2(v2)):=$slave;

Note thatL(step) denotes the visited location at
the last step of the algorithm. If we denote it by
z = (z1, z2, z3), as above, it simply follows that the
next location set should be given byz′ = (z1, z3, z1 +
z2 − z3). This relation definesg.

Few theoretical results on the convergence properties
of the simplex algorithm exist for functions inRm

with m ≥2. In general, it is not known if the al-
gorithm converges to the minimizer even for smooth
fields (Lagariaset al., 1998). It is easy to find exam-
ples such that the fixed-size simplex algorithm ends up
far from the optimum even for convex quadratic func-
tions, especially if the they have steep valley shapes.
For particular fields, such as quadratic fields, one can

derive bounds on the distance to the minimizer when
the simplex algorithm terminate (Silvaet al., 2004)

6.2 Simulations

A simulation study was done to illustrate the behav-
ior of the proposed hierarchical control structure. In
particular we have considered the simplex search with
two AUV’s in a time-varying scalar field, which could
represent salinity, temperature, etc. in a region of inter-
est. Figure 6 shows four snapshots of the evolution of
the AUV’s. The field is quadratic with additive white
noise and a constant drift. As illustrated in the figure,
the vehicles are able to find the minimizer of the field.

REFERENCES

de Sousa, J. Borges, A. Girard and K. Hedrick (2004).
Safe controller design for intelligent cruise con-
trol using differential games. In:Proceedings of
the 2004 MTNS conference.

Deshpande, A., A. Gollu and L. Semenzato (1997).
The shift programming language and run-time
system for dynamic networks of hybrid automata.
Technical Report UCB-ITS-PRR-97-7. Califor-
nia PATH.

Krasovskii, N.N. and A.I. Subbotin (1988).Game-
theoretical control problems. Springer-Verlag.

Lagarias, Jeffrey C., James A. Reeds, Margaret H.
Wright and Paul E. Wright (1998). Conver-
gence properties of the nedler-mead simplex in
low dimensions.SIAM Journal of Optimization
9(1), 112–147.

Lewis, E., Ed.) (1989).Principles of Naval Architec-
ture. Society of Naval Architects and Marine En-
gineers. 2nd revision.

Nelder, J.A. and R. Mead (1965). A simplex method
for function minimization.Computing Journal
7, 308–313.

Silva, Jorge, Alberto Speranzon, J. Borges de Sousa
and Karl Henrik Johansson (2004). Hierarchical
search strategy for a team of autonomous vehi-
cles. In:Proceedings of the 2004 IAV conference.
IFAC.

Appendix A. AN ASIDE ON SHIFT

Shift is a specification language for describing net-
works of hybrid automata. Shift users define types
(classes) with continuous and discrete behavior as de-
picted in table A.1. A simulation starts with an ini-
tial set of components that are instantiations of these
types. A component is an input-output hybrid automa-
ton. Instances of components have unique names. The
world-evolution is derived from the behavior of these
components. The inputs and outputs of different com-

type Vehicle {
input (what we feed to it)
output (what we see on the outside)
state (whats internal)
discrete (discrete modes of behavior)
export (event labels seen from the outside)
flow (continuous evolution)
transition (discrete evolution)
setup (actions executed at create time)

}

Table A.1. Shift component.

ponents can be interconnected. Each discrete state has
a set of differential equations and algebraic definitions
(flow equations) that govern the continuous evolution
of numeric variables. These equations are based on
numeric variables of this type and outputs of other
types accessible through link variables.

The transition structure of the hybrid automaton may
involve synchronization of pairs or sets of compo-
nents. The system alternates between the continuous
mode, during which the evolution is governed by the
flow equations, and the discrete mode, when simula-
tion time is stopped and all possible transitions are
taken, as determined by guards and/or by event syn-
chronization among components. During a discrete
step components can be created, interconnected, and
destroyed. Shift allows hybrid automata to interact
through dynamically reconfigurable input/output con-
nections and synchronous composition.

