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Abstract—A distributed estimation algorithm for sensor net-
works is proposed. A noisy time-varying signal is jointly tracked

by a network of sensor nodes, in which each node computes

its estimate as a weighted sum of its own and its neighbors’
measurements and estimates. The weights are adaptively uaigd
to minimize the variance of the estimation error. Both estination
and the parameter optimization is distributed; no central coor-
dination of the nodes is required. An upper bound of the error
variance in each node is derived. This bound decreases witlné
number of neighboring nodes. The estimation properties of lie
algorithm are illustrated via computer simulations, which are
intended to compare our estimator performance with distributed
schemes that were proposed previously in the literature. Té re-
sults of the paper allow to trading-off communication constaints,
computing efforts and estimation quality for a class of distibuted
filtering problems.

Index Terms—Distributed Estimation; Sensor Networks; Con-
vex Optimization, Parallel and Distributed Computation; In-
network Processing; Cooperative Communication.

|. INTRODUCTION

A sensor network (SN) is a network of autonomous devic

The new estimator for SNs presented in this paper belongs
to a class of recently developed filtering algorithms thatl @i
in-network computing6]. The scalability of these algorithms
is based on that node operates using only local information.
Suitable cooperation between neighboring nodes imprdwes t
estimation quality considerably. Using sensor readingsfr
more than one sensor, for example, can overcome intrinsic
performance limitations due to uncertainty and noise prese
in individual devices.

In-network computing thus differs from the traditional ar-
chitecture where sensors simply provide raw data to a fusion
center. By letting the network do the computations, it is
possible to reach a scalable, fault tolerant and flexiblégdes
The drawback is that such a system is more difficult to analyze
as it is an asynchronous distributed computing syst@&mn [
with inputs and dynamics coupled to a physical environment.
Despite current research activity and major progress,be-t
retical understanding is far from satisfactory of thesdeys,
exposed to link and node failures, packet drops, restricted

Power consumption etc.

that can sense their environment, make computations and

communicate with neighboring devices. SNs, and in pasdicul

wireless sensor networks, have a growing domain of appfi~ Main Contribution

cation in areas such as environmental monitoring, indalstri The main contribution of this paper is a novel distributed

automation, intelligent buildings, search and survedigrand

minimum variance estimator. A time-varying signal is jont

automotive applications3]{5]. The characteristics of SNs{racked by a SN, in which each node computes an estimate as

timation and control algorithms, which explore these syste
limited power, computing and communication capabilities

and estimates. The filter weights are time varying and update
locally. The filter has a cascade structure with an inner loop

important that the algorithms have tuning parameters tat Gyroducing the state estimate and an outer loop producing an
be adjusted according to the demands set by the applicatiofigimate of the error covariance. The state estimate isneata

In this paper, we investigate a distributed estimation rtigm
for tracking an unknown time-varying physical variable.
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as the solution of an optimization problem with quadratistco
function and quadratic constraints. We show that the proble
has a distributed implementation with conditions that can b
locally checked. It is argued that the estimator is pratljica
stable if the signal to track is slowly varying, so the estienaf

each node converges to a neighborhood of the signal to track.
The estimate in each node has consequently a small variance
rf];md a small bias. A bound on the estimation error variance,
WdhiCh is linear in the measurement noise variance and decays
with the number of neighboring nodes, is presented. The
algorithm is thus characterized by a trade-off between the
amount of communication and the resulting estimation ¢yali
Compared to similar distributed algorithms presented & th
literature, the one introduced in this paper features bette
estimates, but at the cost of a slightly increased commurtati
complexity. These aspects are illustrated in the impleatamt
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discussion and computer simulations exposition in thesdatt « Our filter parameters are computed through distributed
part of the paper. algorithms, whereas for examplé4 and [15 rely on
centralized algorithms for designing the filters.

o With respect to our own early contributiong]][ [2],
B. Related Work where we extended the algorithms ih1[-[13] by de-
signing the filter weights such that the variance of the
estimation errors is minimized, here we improve the filter
design considerably and we characterize the performance
limit of the filter.

Distributed signal processing is a very active research are
due to the recent developments in networking, computer and
sensor technologies.

The estimator presented in this paper has two particular
characteristics: it does not rely on a model of the signal to
track, and its filter coefficients are time varying. It is teth C. Outline
to recent contributions on low-pass filtering by diffusion Sectionll presents the distributed estimation problem con-
mechanisms, e.g.1-[13]. Many of these papers focus onsidered throughout the paper. The distributed estimatsigde
diffusion mechanisms to have each node of the network obtaéndiscussed in Sectioll. A distributed minimum variance
the average of the initial samples of the network nodes. Majoptimization problem is posed and by restricting the set of
progress has been made in understanding the convergeseissible filter weights it is possible to obtain a solution
behavior of these consensus or state-agreement approackfgre the error convergence is guaranteed. A bound on the
In [11], a scheme for sensor fusion based on a consensus fiketimation error variance is also computed. The latter part
is proposed. Here, each node computes a local weighted le@stSection Il discusses estimation of the error covariance.
squares estimate that is shown to converge to the maximuBectionIV presents the detail of the implementation of the
likelihood solution for the overall network. An extensiof oestimation algorithm. Numerical results illustrating therfor-
this approach is presented ifi4], where the authors study mance of the proposed estimator and comparing it to some
a distributed average computation of a time-varying signaklated proposals are also given. Finally, Sectbnoncludes
when the signal is affected by a zero-mean noise. A conveie paper.
optimization problem is posed to compute the edge weights,
which each node uses to minimize the least mean square d%yi—

. X . N ) Notation
ation of the estimates. The same linear filter is also constte .
in [15], where the weights are computed off-line to speed up W& denote the set of non-negative integers I =
the computation of the averages. Further characterization1%: 1,2 ---}. With | - | we denote either absolute value or

cardinality, depending on the context. With|| we denote the
Oﬁ:norm of a vector and the spectral norm of a matrix. Given a

H nxn I i -
linear filters using self-synchronization and couplingdtions, matrlel €R 'th)’\ we iengte)\W|f4mr(Ag,)\1 = TAS n_ |f\s Tj;;h
e.g., [l6]-[19. In this case, the estimate of each node iglgenv?hue, Wi min )d_ 1.( ) anc m"‘"(l ) = An 2 |
provided by the state of a nonlinear dynamical system. Tfﬁ Ing the minimum and maximum eigenvaiue, respectively,
system is coupled to some of the other nodes by a staffbere the order is taken with respect to the real part. We refe
coupling function. Some conditions on the coupling funatiot© 'S largest singular value agy.x(A). The trace ofd is

that lead to asymptotic state synchronization are invatsi) denotedtr A. With antglr I we dgnote thg identity matrl)_<
in [19]. and the vector(1,...,1)", respectively. Given a stochastic

Distributed filtering using model-based approaches is-stu\éa”ablex we denote byli « its expected value. For the sake of

ied in various wireless network contexts, e.@QL[24]. Dis- notational simplicity, we disregard the time dependencerwh

tributed Kalman filters and more recently a combination ef thIt is clear from the context. We defiri¥, = INU {0}

diffusion mechanism, discussed previously, with distiéou
Kalman filtering, e.g., 12, [25 have been proposed. A _
plausible approach is to communicate the estimates of tia loA. Problem Formulation

Kalman filters, and then average these values using a diffusi ConsiderN > 1 sensor nodes placed at random and static

consensus filters for distributed sensor fusion is giverlij. [
Another approach to distributed estimation is based on n

Il. PRELIMINARIES

Strategy. positions in space. We assume that each node measures a
The originality of our approach is based on: common scalar signal(t) affected by additive noise:
o Our estimator tracks a time-varying signal, whig-{11] wi(t) = d(t) +vi(t), i=1,...,N

are limited to averaging initial samples.

« Our approach does not require a model of the system théith ¢ € INo and wherey; () is zero-mean white noise. Let us
generates the signal to track, in contrast to model-base@llect measurements and noise variables in vectg(s, =
approaches, e.g.1%], [24]. (ur(t),...,un(®)? ando(t) = (vi(t),...,vn(t))T, so that

« We do not impose a pre-assigned coupling law amome can rewrite the previous equation as
the nodes as in1Q)]. o

« Compared to 11]-[13], we do not rely on the Laplacian u(t) =d(®)1 +o(t), t&MNo.
matrix associated to the communication graph, but cofthe covariance matrix ob(¢) is assumed to be diagonal
sider a more general model of the filter structure. ¥ =021, sov;(t) andv,(t), for i # j, are uncorrelated. The



additive noise, in each node, can be averaged out only ifsiod& Convergence of the Centralized Estimation Error
communicate measurements or estimates. The communicatiof, this section we derive conditions dii(t) and H (t) that
rate of the measurements and estimates should be just fgdrantee the estimation error to converge. Define the astim
enough to track the variations dft). Indeed, increasing the tjgn errore(t) = z(t)—d(t) 1 . Introduces (¢) = d(t)—d(t—1),
sampling rate, in general, is not beneficial because measwg that the error dynamics can be described as
ments might then be affected by auto-correlated noise.

It is convenient to model the communication network as an ~ ¢(t) = K (t)e(t = 1) +d(t)(K(t) + H(t) — 1) 1
undirected graplg = (V, &), whereV = {1,..., N} is the —0(t)K(t) 1 + H(t)v(t). (1.3)

vertex set an C V x V the edge set. We assume that ItI'aking the expected value with respect to the stochastic

(i,j) € € then (j,7) € &, so that the direction of the Edge%ariablev(t), we obtain

can be dropped when representing the network. The gfaph

is said to be connected if there is a sequence of edggsfiat Ee(t)=K(@#)Ee(t—1)+dt)(K(t)+H(t) - 1)1
can be traversed to go from any vertex to any other vertex. —S()K(t)1 . (11.4)

In the sequel, we denote the set of neighbors of nodé’

plus the node itself as Proposition I.1. Consider the system Equati¢ih3). Assume

that
Ni={jeV:(ji)e&Iu{@,i)}. (Kt)+Ht)H1 =1, (11.5)

The estimation algorithm we propose is such that a nodeand that there exist8 < 7o <1 such that
computes an estimate (¢) of d(t) by taking a linear combi- Ymax (K (£)) < 70 (11.6)

nation of neighboring estimates and measures

for all ¢ € INy.
Il(t) _ Z kij(t)dfj(t _ 1) + Z hij(t)uj(t). (”1) (I) If H(t) 1 = 1, for all t € INy, then
JEN; JEN; lim Ee(t)=0.
t——+oo
We assume that neighboring estimates and measuremeiijs If [5(¢)| < A, for all t € INy, then

are always successfully received, i.e., there are no packet JNA
losses. This assumption is obviously plausible for wired-co lim ||Ee(t)] < 7o (11.7)
nections, but it is still valid in wireless networks if cdrta ftee 1 =10

assumptions hold true. More specifically, the designed esti  Proof: If (K (¢)+ H(t))1 = 1 then the system equation
mator is suitable in wireless networks where the samplingduces to

time between measurements is long compared to the coherence

time of the wireless channel (whicrglJ is argund some hundreds Ee(t) = K®)Ee(t —1) +o)(H(t) - )T . (11.8)
of milliseconds) and an Automatic Repeat Request (ARQ}i) If H(t)1 = 1, then (1.8) becomes Ee(t) =
protocol is used. Under such assumptions, if the wireless K(t)Ee(t — 1). Let us consider the functiof(t)
channel does not allow a packet to be successfully received a || Ee(t)]]. It follows that

a given time instance, there is enough time to detect and re-

transmit erroneous packets until they are successfulsived. VE) < [E@IVE-1) < wV(E-1
These assumptions are representative of the IEEE 802.11b which implies thatlim; ., ., Ee(t) = 0.
and IEEE 802.11g76], which have been actually used for (i) In this case, we havéf(t)1 — 1 = —K(¢)1 and thus
distributed estimation and control algorithms of unmanned the system Equatiorl(3) becomes

) <V (0),

aerial vehicles%7). _ o Ee(t) = K Ee(t — 1) — () K ()1 .
We assume that for each notlghe algorithm is initialized _
with z;(0) = u;(0), j € N;. In vector notation, we have With V() = [ Ee(t), we have

V() S IE@IV(E—1) + | K@)IVNA

x(t) = K(t)x(t — 1)+ H(t)u(t) . 1.2
(t) = KOzt = 1) + H(t)u(?) (1.2) V1) + oA
K (t) and H(t) can be interpreted as the adjacency matrices
of two graphs with time-varying weights. These graphs are
compatible with the underlying communication network rep-
resented byg.
Given a SN modeled as a connected grgphve have the

following design problem: find time-varying matricés(t) ,nger which the estimate is unbiased. It is possible to show

and H(t), compatible withG, such that the signa(t) is hat in this case the variance is minimizedAif(t) = 0 and
consistently estimated and the variance of the estimate is

minimized. Moreover, the solution should be distributed in { if jeN;

1— t
<AV (0) + 70—V NA
L =0
Taking the limit fort — +o0o we obtained the result.
[ |
Proposition11.1(i) provides the conditionH (t)1 = 1

the sense that the computation/of(t) and h;;(t) should be hij(t) = hji(t) = § |V
performed locally by node. 0 otherwise



Note that nodes do not use any memory and that the eremailable at nodé in the vectore; € RM:. The elements of

variance at each node is proportional to its neighborharsl sie; are ordered according to node indices:

However, ifd(t) is slowly varying, then, under the assumptions

of Propositionll.1(ii), it is possible to guarantee thafE e(¢)||

tends to a neighborhood of the origin, but the estimate mig8imilarly, we introduce vectors! (¢),77 (t) € RM: corre-

be biased. Note also th&tE e(t)|| is a cumulative bias, i.e., it sponding to the non-zero elements of révef the matrices

is a function of the sum of théV biases of individual nodes. K (¢t) and H(t), respectively, and ordered according to node
The size of the cumulative bias can be kept small witimdices.

respect to the signal to track by defining a proper value of The expected value of the estimation error at nbdan be

vo. In particular, Equationll.7) can be related to the Signal-written as

to-Noise Ratio (SNR) of the average of the estimate as fallow T T

Let P, denote the average power éfand let P, denote the Bei(t) = ki () Bei(t —1) = w7 ()o() 1, (n.1)

desired power of the biases of the average of the estimatgbere we used the fact thal(t) — d(t — 1) = d(¢) and

Then, we define the desired SNR as SNRP,;/P,. Since that (K(t) + H(t))1 = 1. Note that the latter inequality

there areV nodes, we consider the average SNR of each noigeequivalent to(r;(t) + n;(t))* 1 = 1. We assume that

asY = SNR/N. Let us assume that we want the estimator ta(0) = u;(0). Hence

S e /G e el side of FQUatbimlibe eaual p (e, (1) — Be,(1)? = wT (Ot = Dr(0) + o0 (1),

T . .
ei:(eil,...,ewi) , 1 < e <y -

where T';(t) = E(e(t) — Ee(t)(e(t) — Ee(t)T. To
Yo = VT . minimize the variance of the estimation error in each node,
VT +A we need to determine;(t) and n;(¢) so that the previous

The right-hand side is useful in the tuning of the eStimatof?(;(lE)rv(\a/isri;ogplcismri;:tlig]rllzsgol?lter?'mh time instant. We have the

Hence, we denote it as(A, T). By choosing an appropriate
T, we have a guaranteed convergence property of the estimat®r : min kI (OT(t — Dri(t) + a*nF ()n:(t)
given by the correspondingi(A, ). This function will allow mi ()i ()

us to relate the size of the bias of estimates with the variati ’ (.2)
of the signal to track, and the stability of the estimatesyas st (ki(t) +mi(t)” 1L =1, (1.3)
see in the next sections. Ymax (K (1)) < f(A,T). (1.4)

The inequality constraint 1l{.4) is still global, since

[1l. DISTRIBUTED ESTIMATOR DESIGN Ymax (K (t)) depends on alk;(t), i = 1,...,N. We show

. ] ] next that it can be replaced by the local constraint
In this section we describe how each node computes adap-

tive weights to minimize its estimation error variance. et ki@l < i, t € No, (1.5)

that, in order to guarantee that the estimation error of ﬂo\ﬂ—]erewi > 0 is a constant that can be computed locally. The
overall sensor network, in average, converges to a neighb@ky constraint, however, even though ensure the stabifity o
of the origin, each node needs to locally compute the rowe estimation error, leads to a distributed solution wiigcim
elements of K (¢t) and H(t) so that conditions in Proposi—genera| different from the centralized one.

tion 1.1 are fulfilled. The condition K (t) + H(t))1 = 1 Fori = 1,...,N, define the se®; = {j # i : N N

is easily handled in a distributed way, as it states that thg _ ¢} which is the collection of nodes located at two hops

sum of the row-elements ok (¢) and H(t) need to sum up gistance from nodé plus neighbor nodes of We have the
to one. The bound on the maximum singular valueidft),  foliowing result.

however, requires some transformations so that new conditi N )

on the row-elements ok (¢) fulfill ymax(K () < f(A,T). Proposition 1ll.1. Suppose there exist; > 0,i=1,..., N,
It turns out that it is possible to determine a local conditio Such that

ZjeM kfj < ;, wherey; is a constant that can be computed i+ \/w— Z
locally by the nodes. We then pose a optimization problem ’ ’
for finding optimal weights that minimize the error variance . ‘
in each node, where the previous conditions are considemﬂereagig,agf} € (0,1) are such that

as constraints. An important aspect of the distributednogiti M,

solution is that the weights depend on the error covarianc 2 () N\ L2 2 () 2
matrix, which is not available at each node. We end this sacti D ke<a ; Fir ce/\;w_ Fe < 0y ; Ry
by discussing a way of estimating it. s N

JEO;

cE./\fjﬁM
If k()2 < i =1,...,N, thenymax (K () < F(A,T).

A. Distributed Variance Minimization Proof: We use GerSgorin to bound the eigenvalues of

Let M; = |N;|, which denotes the number of neighbors othe matrix K K7, i.e., the singular values ok. The follow-
nodei, including the node itself. Collect the estimation erroring relations hold:[K K7];; = S k2 and [KKT); =

c=1 "Vic



Zivzl kickjc. By the GerSgorin Theorem we know that forFurther, the Perron-Frobenius theory cannot be directyieg

r=1,...,N to bound the eigenvalues, because we make no assumption on
N the sign of the elements df’( ).
M(KKT) € U {zeR:|z— [KK"];| < Ri(KK™)} The parameter&(lj anda'?) in Propositionlll.1 can all be
i=1 set to one. However, this y|elds very conservative bounds on
with the maximum eigenvalue oK K. In SectionlV, we show
N N I N how to chose these parameters to avoid bounds that are too
RZ(KKT) _ Z |[KKT]U‘ _ Z Z kzck_] conservative.
j=1 j=1le=1
7 77 B. Optimal Weights for Variance Minimization
Now the inner sum inR;(KK™) is non-zero only forc € , . . .
Using previous results, we consider the following local
N; NN;. Thus, Y _
optimization problem:
. Ty _ . . ’PZ i itTFit—l it QitTit
R(KE") =" > kickje| - 2 o, (hin ki) it = )ri(t) + 07 ni ()" ni(t)
JEO; |cEN;NN; (|||.7)
Using the Cauchy-Schwarz inequality, s.t. (ki) + ()71 =1
? Irall® < i, (1.8)
kickje| < k? k2. : o
ce/\;Nv 8 ce./\;'v\/' e ce/\;w_ Je We remark here that Problef, has a different solution with
s s s respect to Problen®;, since the constraintl(.4) has been
Then, replaced with [|1.8). Problem?P; is convex. In fact, the cost
N function is convex, ag'(t — 1) is positive definite, since it
Z D kickje| < Y DA represents the covariance matrix of Gaussian random Veyiab
j=1lc=1 €0, \| ceN;NN; ce/\/jrwi and the two constraints are also convex. The problem admits
i a strict interior point solution, corresponding#g(¢) = 0 and
n:(t)1 = 1. Thus, Slater's condition is satisfied and strong
<>y Z K2 o ” Z K2 duality holds P9, pag. 226]. The problem, however, does not
jeo; have a closed form solution: we need to rely on numerical
v algorithms to derive the optimal;(¢) and»;(t). The following
. - OINE) roposition provides a specific characterization of thetsmh.
= Z"%Zir : Z Qi 1JJ Zﬁnr Prop P b
J€O; Proposition 1.2, For a given positive definite matrik; (¢ —
Hence, 1), the solution to problen®, is given by
N M; o?(Ti(t — 1)+ &)t
i(t) = 1.9
(KK e|JzeC: z—z% < ri(?) o2 1T(Di(t — 1)+ &)1 1 + M; (1-9)
i=1 1
i (1) = , [1.10
77() 0'2]1T(Fi(t—1)+fif)_l]l +Mi ( )
P9
Z i Y ﬁaar with & € [0, max(0, 02 //M;th; — Amin (L (t — 1)))].

JEO; r=1
Proof: Since the problem is convex and Slater’s condition
From the hypothesis thd;| = Ziuﬁ k% <4 and (11.6), holds, the KKT conditions are both necessary and sufficient

iy

then for optimality. The primal and dual optimal point&s;, 7;)
M, M, and (A7, v}) respectively, need to satisfy
IETNDIED
r=1 r=1

7 7/
JEO;

i) () 2
Za” Qg 33 < fAAT). (k) Tky —4; <0, (ki +n)T1 —1=0
& =0, G((R)TR =) =0,
2+ N D +v1 =0, 20°nF + i1 =0,

Henceymax (K) < f(A, 1), m
Propositionlll.1 provides a simple local condition on the
filter coefficients such thati,..(K) < f(A,T). We can where the last two KKT conditions follow from

expect that Propositiofil.1 is in general conservative, be-y;, 1., n. ¢ v) andV,,, L(x;, m;, €, v) with the Lagrangian
cause no a-priori knowledge of the network topology is used, '

the proof relies on the Gersgorin theorem and the Cauchy- L(x;,ni,&,v) = k! Tiki +onlin +& (fsfm — wi)
Schwartz inequality. There are many other ways to bound the + Vi((,{i )71 - 1) .

eigenvalues of a matrix by its elements than the one used in

the proof above, e.g.2B, pages 378-389]. However, we daCombining these two KKT conditions with the second KKT
not know of any other bounds requiring only local informatio condition we obtain the optimal values. From the fourth KKT



condition we have that eith&r = 0 or (x )T ¥ =1;, where of the estimator that computes the averages of themea-

the second equality gives surementsy;(t). The bound is obviously rather conservative,
o 1T, + 6021 since_ we do not use any knowledge gbout the covariance
>t 5 =5 matrix I';(¢). Propositionlll.2 helps us to improve the bound
(1T + D)L+ M) in Propositionlll.3 as follows.

We are not able to provide a soluti¢hin closed form. Instead
we give a bound for the variable. From the previous equati
we can enforce & > 0 such that

Corollary lll.4. The optimal value of;(t) and;(t) are such
HMat the error variance at node satisfies

2

(yTwr < D HEDTHE ot E(a()-Ea() < - .

! T M; - M; )\?nln(rl + 61) - M; + (Zje\/i Mj_l + (lel)il/Q)

from where we obtain . e\ {0},
§2 —— \/—ZZJZ = Amin(T) - Proof: Using the result in Propositiohl.3 we have that

and for all these values @fthe first KKT condition is always tr0y(t—1) = Z E(e; (t—1)— Ee; (t—1))2 < 0_2
satisfied. This implies that the optimal value &Mmust be in JN " K - P M
the interval[0, max(0, 0 //M;h; — Amin(Ts(t — 1))], and the ' '
theorem is proven. [ ] us

Propositionlll.2 gives an interval within which the optimal o2
&; can be found. The first constraint in probléPg is similar Amax(Li(t = 1) + &) < Z ﬁ+
to the water-filling problem for power allocation in wiretes JEN 5
networks R9]. Analogously to that problem, simple search 0.2 N (Tt — 1

. . . . . +max I mm( l( ))
algorithms such as a bisection algorithm, can be considered \/ M;;
solve for&; numerically. Note that each nodaneeds to know Z o?
the covariance matriX';(t — 1) to compute the weights. It is =
(t—1) p g = M; m

important to notice that the problef, does not have the same
solution as the probler®,, as the constraintsi(.4) and (11.8) where we used the bound grdetermined in Propositioftl.2.
are not equivalent, although ifl(.8) holds then [{I.4) holds Since

as well 17t —1 D1 > !
(Lt = D) + &) = Amax (L (6 — 1) + &M

C. Bounds on the Error Variance we have that

The optimal weights from Propositioll.2 gives the fol- 2
lowing estimation error variance. (t) — ()2 <
g E(ez(t) Eez(t)) = Ml_i_a_QﬂT(FZ(t_l)_FglI),lﬂ
Proposition 1I1.3. Let x,(¢t) and»;(t) be an optimal solution o2
given by(l11.9) and (I11.10). Then < -
) ) -1 o) —1/2
E (e:(0) — Ees(0))* = o2 My (Zyen My !+ (M) ™12)
E(e;(t) — E <z "
(ei(t) = Eei(t)* < 0
t € No \ {0}. D. Distributed Computation of Constraints

Proof: For t = 0, e;(0) = w;(0) = d(0) + v;(0), so _ The choice of the constantg;, i = 1,...,N, in the
E (e;(0) — Ee;(0))2 = 0. Fort > 0, the error variance of local constraint of problenfP, is critical for the perfor-
the i-th node with the optimal values of;(t) and;(t) is mance of the distributed estimator. Next we discuss how to

5 compute good values ofy;. The intuition is thaty; has

E (e;(t) — Eei(t))? = g to be upper bounded to guarantee the estimation error to
M +021T(0i(t - 1)+ &)1 1 converge, buty; should not be too small in order to put
oG 1Tt — 1)+ &1)721 large enough weights on the estimates. Indeed, from the
B (M; + 021 T(Ty(t — 1) + &I)~1 1) proof of Propositionlll.2 we see that ify; is large then the
9 ’ Lagrangian multiplier¢; is small, since it must lie in the in

< i intervalmax [0, 02 //M;{; — Amin(Ti(t — 1))]. From Propo-
Mi+o? 1Tt = 1) + &)~ sition 111.3 (a[nd C(/)rollarylll.4) it i:i cl(ear trzc');l]t the estima?[ion
Sincel’;(t — 1) is positive definite and; > 0, it holds that error variance at the nodedecreases a$; decreases. Thus
]lj(l“i(t —1)+&I)711 > 0. HenceE (e;(t) — Ee;(t))? < the larger the value ofy; the lower the error variance.
i, t€No \ {0} . This concludes the proof. ] The set of nonlinear equations in Proposititinl provides
A consequence of Propositidil.3 is that the estimation a tool to determine suitable values eof; that guarantee
error in each node is always upper bounded by the variaratability. Since we are interested in determining the lstrge




solution of the nonlinear equations, we consider the falhgw a time-varying system and the stochastic procesand thus

optimization problem: e, Is not stationary. However, if we consider the signals m th
N guasi-stationary sense, estimation based on samplesgeresa
wmai Zwi (I11.11) to give good results. We have the following definition.
P i=1 Definition 1115 ([30, pag. 34]) A signals(t) : R — R is

st i+ Vi - ooy < £2(A, ) said to be quasi-stationary if there exists a positive canist
2 R C and a function?, : R — R, such that fulfills the following

JEO; ..
(1.12) conditions
v >0, (i) Es(t) =ms(t), Ims(t)] < C forall ¢
. ) . . (i) Es(t)s(r) = Rs(t,r), |Rs(t,r)| < C for all ¢ and

withi =1,..., N. Itis possible to show that previous problem
has a unique solution, which is the solution to the following ) 1
equations: NLHEOO N Z Ri(t,t —7) = Rs(7)

t=1
Wi + /U Z az(,i;al(,g?zpj = (A, T) i=1,...,N. for all 7.

€ (I11.13) It is easy to see that the time-varying linear systéh®)

is uniformly bounded-input bounded-output stab8d,[pag.

Clearly the solution of such system of nonlinear equationgg). |f a quasi-stationary signal is the input of such syste
is interesting in our setup if it can be solved in a decentrahen its output is also quasi-stationaBe]. In our case, the
ized fashion. The fact that inll(.13) only information from measurement signal(t) is (component-wise) stationary and
neighboring nodes is required, and not of the entire netwoktgodic and thus also quasi-stationary. This implies thet a
allows us to develop a decentralized algorithm to compuge th ;) is quasi-stationary, since it is the output of a uniformly
soluti.on.FoIIowing ¥, Pag.181-191], we consider the iterativexponentially stable time-varying linear system. Thus, we
algorithm estimate the error covariance using the sample covariance.

_ _ Specifically, we have that the mealie¢; = m,,(¢t) and

Y+ =TO) = @EE),. Inwo) - (114) covariancel';(t) can be estimated from samples as

with initial condition(0) > 0 and withT : RY — RY such

that rhq(t):% &(7) (I11.16)
7=0

T((0) = Py aaivi) | +4r2A) Pifr) =  @(r) — e ()@ () — e ()
~ (111.17)

(11.15) Whereé;(¢) is the an estimate of the error. Thus the problem
reduces to design an estimatorft). Node: has estimates

_ _ _ _ z;, (t) and measurements, (t), i; € N;, available. Let:() ()

whereT; (1) is obtained by solvingl(l.13) with respect tai.  andy,(9)(¢) denote the collection of all these variables. We can

It is not difficult to sh(_)w thatl’; (¢) is a contractive funct!on. model this data set as

The component solution method ] [ensures that the fixed

point solution at which the iteration converges is the sotut = (t) = d(t) 1 + 8(t) +w(t),  uwD(t) =d(t)1 +v(t),

of the nonlinear EquationdI(.13). The computation of the ) .

iteration (I1.14) can be done distributively. Note that node Where 5(t) & RM: models the bias of the estimates and

does not need to know the thresholds j # i, of all the other w(t) is zero-mean Gaugglan noise modellllng the variance of

nodes in the network, but those which concur in the definitidh® estimator. Summarizing: nodehas available2/; data

of Ti(1), i.e.,1; that are associated to the nodes of theSset vglues in which half of the (_Jlata are_corrupted by a small

Thresholds corresponding to nodes at two hops from riod®@i@sed terms(t) and a low variance noise(t) and the other

can be communicate to such node through its neighbors, witlf i corrupted by zero-mean Gaussian naigg with high

little communication overhead. Notice that, the compotagf Variance. It is clear that using only")(t) to generate an

the thresholds and the associated communication takes pigstimated(t) of d(t), which could then be used to estimate

before the nodes start to track the sigdg). Notice also that € (f) = ! (t) — d(t) 1, would have the advantage of being

the convergence rate of the component solution method t§iPiased. However, its covariance is rather large sihGes

block contraction converges geometrically to the fixed pointyPically small. Thus, using only measurements to estimate
d(t) yield to an over-estimate of the error, which results in poor

o _ performance. On the other hand, using onf$/ (t) we obtain
E. Estimation of Error Covariance an under-estimate of the error. This makes the weights
Estimating the error covariance matrix is in general hard foapidly vanish and the signal measurements are discatuesl, t
the problem considered in this paper, because the estinsatatracking becomes impossible. From these arguments, irr orde

4,j i, 1
JEO;



to use bothxi(t) and u(t) we pose a linear least
problem as follows:

H( -
)H <p

|8 (d
with A4 € R2MixMi+1 gnd B € RMixMi+1

1 7

2

(0 I),

squard-or the choice of the parametewe propose to use the Gen-

eralized Cross-Validation (GCV) metho@4]. This consists
in choosingr as
I(ATA+ vBTB)"AT (2%, u®)T||

tr (ATA+vBTB)~!
Typically the GCV approach is computationally expensive
since the trace of the matrixA” A + v BT B)~1 is difficult to
compute, but in our case we have a closed form representation

of the matrix, and thus the computation is not difficult.
However, it might be computationally difficult to carry out

v = arg min

andp being the maxim value of the squared norm of the biaghe minimization. Observing that

However, the previous problem is very difficult to solve in

a closed form, as it is a Quadratically Constrained Quagirativ = argmin
Problem and it typically requires heavy numerical alganih

to find the solution, such the transformation into a SDP
problem R9, pag. 653]. Notice also that, in general, the value

(AT A+ vBTB)~1AT (i ui)T ||

tr (ATA+ vBTB)~ !
|(ATA + vBTB)~ 1AT|\

tr (ATA+ vBTB)~1 I

< argmin

uHT|. (11.21)

of p is not known in advance, being it a maximum value of thg syp-optimal value of' can be computed solving the right
cumulative bias of\/; nodes. We thus consider the followinghang side of if1.21). Notice that the first term in the right

regularized problem

()

2 2

ool (3)

(I1.18)

4(3)

hand side ofI{l.21) is a function ofv that can be computed
off-line and stored in a look-up table at the node. Then, for
different data, the problem becomes that of searching in the
table.

wherev > 0 is a parameter whose choice is typically rather Using (I1.20) with the parameter computed from I{1.21)

difficult.
The solution of [11.18) is
(d,5)" =

(z', u')T A (ATA + VBTB)_1 .

we can then estimate the error mean and covariance matrix
applying (11.16) and (11.17), respectively.

IV. IMPLEMENTATION AND NUMERICAL RESULTS

The inverse of the matrix in the previous equation can be This section presents the estimator structure and the algo-

computed in closed form using the following result:

Proposition II1.6. If v > 0 then

(ATA+vB"B) " =

1 1+V _]lT
_ _ .
M) | og MUEmIELL ) (019)
1+v
Proof: By Schur's complement we obtain
(ATA+vB"B) " =
-1
M;
2Mi_ v ]lT ]].]lT—2M11 I—l
( 1+u> ( (1+v)I)
(117 —2M;(1 +v)I)~ 11 (14 ) 117 !
i v v 2MZ

From [33] it follows that
117

1\t T
14— —— ) =
<( +v) 2MZ-) +v P2+’

It is easy from here to show that the resulting matrixlisX9).
[ |
Since we are interested in estimatiagt) = z(t) — d(t) 1
we observe that such an estimate is given/yFrom the
solution of (11.18), we have
xt viTai 4+ (1+v) 1Ty

=1 M2 (i+0) "

(111.20)

rithmic implementation followed by some numerical results

A. Estimator Structure and Implementation

Figure 1 summarizes the structure of the estimator imple-
mented in each node. The estimator has a cascade structure
with two sub-systems: the one to the left is an adaptive
filter that produces the estimate df the one to the right
computes an estimate of the error covariance mailfjx
In the following, we discuss in some detail a pseudo-code
implementation of the blocks in the figure. The estimator is
presented as Algorithrh. Initially, the distributed computation
of the threshold is performed (linés=8): node: updates its
threshold¢; until a given preC|S|onw is reached. In the
computations ofy;, we chosex; l) = |N; NN/ (M; — 1)

anda(” |\ ﬂ/\/’|/( Th|s works well in practlce
becausekm , b = MZ, are of similar magnitude.
Indeed, the stability of the average of the estimation error
established in Sectionl-B, and the bounds on the error
variance in Sectionll-C, ensure that estimates among nodes
have similar performance.

Numerical results show that that the while-loop (lines 4-8)
converges after about 10-20 iterations.

The estimators for the local mean estimation error and the
local covariance matrix are then initialized (lines 9-1Dhe
main loop of the estimator is lines 13-24. Lines 14-19 are re-
lated to the left subsystem of FiguteThe optimal weights are
computed using Equation$ll(9) and (I1.10) (lines 17-18).
Notice that the optimal Lagrangian multipli€y is computed



Fig. 1.

Estimator block designed in subsectibhA —II-B

) vi w0 LG : " 14(0) 3
i TjeN; 33 3
| vf = kT (Oz+nT (b X é(t) R |
: A N Eq. (11.16) i)
‘ with weights (I1.9) L Eq. (11.20 !
Tt —1) and (11.10) zi(t) @ 20 and (I1.17) |
3 L |
i zi(t —1) ¥ i ‘
| L Tit—1 |
: (o ! o |
3 : |

Estimator block designed in sectidh-E

Block diagram of the proposed estimator. It consigtéwo subsystems in a cascade coupling. The subsystem tefthis an adaptive filter that

produces the estimate dft) with small variance and bias. The subsystem to the righineséis the error covariance matrix.

Algorithm 1 Estimation algorithm for nodé

computational power, so that the minimum eigenvalue of the

1.¢:=0 matrix I";(¢ — 1) cannot be exactly computed, an upper-bound
g' 38)_—1)1/:1\2 based on Gersgorin can be used instead. The estimate of
2 while i (t) s Gi(t —1)| > w =101 do d.(t) is computed in !lne 19. Llnes. 20—_23 are related to the
5 Vit + 1) = Ti((1)) right subsystem of Figuré. These lines implement the error
6. collect thresholds from nodes i®; covariance estimation by solving the constrained leaséiss
7. ti=t+1 minimization problem described in subsectibRE. Sample
g' fnf ‘(’)"h"e mean and covariance of the estimation error are updated in
10. e, (1) i= 0 lines 2_2—23. These formulas correspond to recursive imple-
11. Ty(t) := 021 mentation of (|1.16) and (I1.17).
12. 2i(t) == ui(t) Let us comment on the inversions of the estimated error
13. while foreverdo covariance matrix’; in lines 17-18. In general, the dimension
1‘51- iwz t:J|r/\1/z| of I'; is not a problem because we consider cases when
' R 2 . the number of neighbors is small. Precautions have still to
1o o = bisection (2m ?X[O’U / szsﬁ_ Auin(Ta(t = D)) be taken, because even though the error covariance matrix
17. k(L) == g (Fi(tf D+&hH— 1 I'; is always positive definite, its estimaie; may not be
Mi+o? 1Tt — 1)+ &)1 L positive definite before sufficient statistics are colldcta our
18, ni(t) = ] 1 imp_le_mentation, we use heuristics to ensure thas positive
M+ 21Tt —1)+ &)1 definite.
19. i(h) = Ljen “’i;(t_)xi (t-1) +§:;eNi mi; ()u; (t) B. Numerical Results
20. B = 11 - Vliw.m;r U+v)1 u Numerical simulations have been carried out in order to
v i1+ 2)(A +v) validate performance of the proposed distributed estimete
21. €& =0 A 1 compare the our estimator with some similar estimatorsaéla
22 e, (t) = ——1he, (t—1) + Eé,L-(t) to the literature. We consider the following five estimators
A P 1 By K=H= (I-L)/2 whereL is the Laplacian matrix
23. i(t) = — Li(t — 1) + n (&(t) — 1he, (1)) (&(t) — associated to the gragh
e, (£)T E,: K =0andH = [h;;] with h;; = 1/M; if node: and
. j are connected, anfl;; = 0 otherwise. Thus, the
24. end while updated estimate is the average of the measurements.
FEs: K = [kij], where kii = 1/2Ml, kij = 1/Ml if
nodei and j are connectedk;; = 0 otherwise,
using the functiorbi sect i on which takes as argument the whereasH = [h;;] with H;; = 1/2M;, andh;; =0

interval [0, max(0, 02 //M;1; — Amin(Ti(t — 1)))] where the

elsewhere. This is the average of the old estimates

optimal value lays. Notice that, if the nodes have limited and node’s single measurement.
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Fig. 2. Test signals used in the numerical simulations. Nuwdéds, .. ., ds Fig. 5. Zoom of some of the curves in FigueeIn particular, we plot the

measurements and estimates of the ndded 8 and23 having the minimum
degree, degree equal to the average degree of the netwatkmarimum,

respectively (see Figur®). In thick solid curve is shown the signdl(¢). The

dashed curves show the measurement and estimate at nodedbzhi-dotted
those at node 18 and the solid curves show those at node 2Hofizental

lines in the the top-left figure are the interval within whitihe estimates
variate. We chose to have different scales to make more theaestimation
process.

are obtained fromi; (t) changing the frequency.

We discuss in detail the distributed estimator over the agkw

(b) network Gss. Measurements and estimates for all nodes are
_ ‘ shown in Figured for ds. Clearly, the measurements are quite
Fig. 3. Topology of the networks witlv" = 25 nodes (on the left) and noisy, and in particularf? = 1.5. All estimators,E1, ..., E4

N = 35 (on the right) used in the simulations. For the network with= 35, . .
three nodes are highlighted, corresponding to the identlfée 18, and 23. and E,, are able to track the signal, but the quality of the

They have the following number of neighbors¥/i2| = 2, [Nis| = 8, and estimates are varying quite a bit. It is evident that and
|NV23| = 15. The node with maximum degree in all the network is nade E, give the worst estimates, whil&, performs best. The
relative performance betweeh, ..., F, is rather obvious
) ) , ~given how their estimate is constructed, e B, simply take
By K = H with k;; = 1/2M; if node i and j {he ayerage of the measurements whilg averages over
are connected, and = j. The updated estimatepoih measurements and estimates. By choosing the weights
is the average of the old estimates and all localynopriately, we see that the proposed estimBogives sub-

_ measurements. o stantially lower estimation variance. Figuseshows a zoom of
Ep: The estimator proposed in this paper. Figure4 for the time interval350, 450]. The figure compares
The estimatorsky, ..., E, are based on various heuristicsthe measurements and estimates of the three nodes higialight

They are related to proposals in the literature, ekf.,uses in Figure 3. These nodes represent the node with minimum
filter coefficients given by the Laplacian matrix, cfLA]-[13].  connectivity (dashed curve), average connectivity (cstted

It is important to note, however, that in general the weightsirve) and maximum connectivity (solid curve). The thicieli
based on Laplacian do not ensure the minimization of th@rrespond tad,. Note that the node with low connectivity

variance of the estimation error. is not following d» very well. We also see that the estimate
Figure2 shows a set of test signals, .. ., ds that we have produced byE; has a quite substantial bias. In general, we

used to benchmark the estimators. Note that the signaksr diffiave observed through extensive simulations fHyatvork well

only in their frequency content. for low-frequency signals to track, wheredg works better

We suppose that we know a bound far based on these for signal with higher frequency. Numerical studies of vas
signals. We have sek to be 10% larger than its actual value networks confirm the type of behaviors we see in Figures
for each signal. We have chosen the desired average SNRatal5. We summarize a set of these simulations next. In order
T = 10, see Sectiorl. to study performance of the estimators, we consider the mean

We consider two network§s; and G35 with N = 25 and square error of the estimates of each node. Each estimator ha
N = 35 nodes, respectively, see FiguBeThese networks are an initial transition phase, so to remove that we compute the
obtained by distributing the nodes randomly over a squargtkan square error aft&) steps. We average the mean square
area of sizeN/3. The graph is then obtained by letting twoerror over all nodes of the network. The average we obtain,
nodes communicate if their relative distance is less tf@h  we denote MSE. We define an improvement factor of our
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Fig. 4. Plots showingV = 35 realizations of the measurements and estimates at eachfoodach estimator and for the signa (¢).

estimator compared to the estimatdys, ..., F; as V. CONCLUSIONS

i = MSE(E:) — MSE(E) i=1.. .. 4. In this paper, we have presented a fully distributed minimum
MSE(E;) 7 Y variance estimator for sensor networks. The purpose of such
estimator is accurate tracking of a time varying signal gisin
Table | reports MSE andu; for Gos and Gss, and for all noisy measurements. A mathematical framework is proposed
test signalsdi, ...,ds. Table| shows thatE, outperforms to design a filter, which runs locally in each node. It only
all other estimators in all cases. Specifically, exhibits requires a cooperation among neighboring nodes. In order
performance improvement from a minimum ©5%, in the to obtain a minimum variance estimator, we started from a
case of networkjss nodes andi;, up to 85% in the same centralized optimization problem, and then we convertedat
network andd,. The Laplacian-based estimatfi has poor a decentralized problem transforming global constraints i
performance. Note that; typically puts more weights to the distributed ones. The filter structure is composed by a cksca
local estimate and measurement of a node than to the estimatetwo blocks: the first block computes the estimator coeffi-
and measurements received from its neighbors. Because t¢lents at each time instance, and the second block estimates
network is homogenous, this yields poor performance. Whéme error covariance matrix needed, by the first block, at nex
the frequency of the test signal is high, the performanstep. The estimator coefficients are designed such thabtiaé |
improvement is not substantial fd#,. The reason is found in behavior of a node ensures the overall estimation process to
the fact that our estimator tries to keep low the bias, buirmpy stable. We showed that the distributed estimator is stabth,
the price of an higher variance of the estimation error. Ifina mean and variance of the estimation error bounded. Nunterica
in Figure 6 we plotted the maximum singular value of theesults proved that our filter outperforms existing solusio
matrix K (¢) of E,, as a function of time for the simulations inproposed in literature, as well as other heuristic solistion
Tablel. This plot verifies the validity of our design approachi-uture work includes stability analysis of the filter witlspect
to packet losses, and experimental validation.




di(t), A =0.118
Type of Estimator N =25 N =35
MSE i MSE i
E7: Laplacian Based 0.445 32.7% 0.456 41.1 %
E>: Average ofu 0.659 54.5 % 0.567 52.6 %
E5: Average ofr andu; | 0.665 549 % 0.872 69.2 %
Ey4: Average ofr andu 0.372 19.6 % 0.316 15.1 %
E,: Proposed Estimator | 0.299 0.270
d2(t) A =0.059
Type of Estimator N =25 N =35
MSE E MSE R
E7: Laplacian Based 0.445 48.8 % 0.454 52.9 %
E>: Average ofu 0.658 65.4 % 0.565 62.2 %
E3: Average ofr andwu; | 0.389 41.6 % 0.539 60.3 %
Ey4: Average ofr andu 0.366 37.7 % 0.313 31.6 %
E,: Proposed Estimator | 0.228 0.214
dz(t), A =0.04
Type of Estimator N =25 N =35
MSE E MSE R
E7: Laplacian Based 0.442 49.0 % 0.457 59.4 %
E>: Average ofu 0.662 65.8 % 0.572 67.6 %
E3: Average ofr andwu; | 0.330 31.5% 0.391 525 %
Ey4: Average ofr andu 0.367 38.4 % 0.315 41.2 %
E,: Proposed Estimator | 0.224 0.186
di(0), A = 0.033
Type of Estimator =25 N =35
MSE E MSE R
E7: Laplacian Based 0.444 61.8 % 0.447 66.4 %
E>: Average ofu 0.663 74.3 % 0.564 73.4 %
E3: Average ofr andwu; | 0.240 28.8 % 0.256 41.3 %
Ey4: Average ofr andu 0.370 53.8 % 0.308 51.2 %
E,: Proposed Estimator | 0.170 0.150
d5(0), A = 0.00
Type of Estimator N =25 N =35
MSE E MSE R
FE: Laplacian Based 0.436 73.9 % 0.446 81 %
E>: Average ofu 0.656 83.8 % 0.560 85 %
E3: Average ofr andwu; | 0.195 41.6 % 0.150 44 %
E4: Average ofr andu 0.358 68.2 % 0.305 72 %
E,: Proposed Estimator | 0.114 0.080
TABLE |

PERFORMANCE(MSE AND IMPROVEMENT FACTOR) OF THE PROPOSED
ESTIMATOR VERSUS SOME CHOSEN HEURISTICS HE TABLE HAS BEEN
DIVIDED INTO FIVE SUB-TABLES, ONE FOR EACH TEST SIGNAL
d1(t)-ds(t), AND FOR DIFFERENT CASES OF THE NETWORK SIZE
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