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Abstract—A distributed estimation algorithm for sensor net-
works is proposed. A noisy time-varying signal is jointly tracked
by a network of sensor nodes, in which each node computes
its estimate as a weighted sum of its own and its neighbors’
measurements and estimates. The weights are adaptively updated
to minimize the variance of the estimation error. Both estimation
and the parameter optimization is distributed; no central coor-
dination of the nodes is required. An upper bound of the error
variance in each node is derived. This bound decreases with the
number of neighboring nodes. The estimation properties of the
algorithm are illustrated via computer simulations, which are
intended to compare our estimator performance with distributed
schemes that were proposed previously in the literature. The re-
sults of the paper allow to trading-off communication constraints,
computing efforts and estimation quality for a class of distributed
filtering problems.

Index Terms—Distributed Estimation; Sensor Networks; Con-
vex Optimization, Parallel and Distributed Computation; I n-
network Processing; Cooperative Communication.

I. I NTRODUCTION

A sensor network (SN) is a network of autonomous devices
that can sense their environment, make computations and
communicate with neighboring devices. SNs, and in particular
wireless sensor networks, have a growing domain of appli-
cation in areas such as environmental monitoring, industrial
automation, intelligent buildings, search and surveillance, and
automotive applications [3]–[5]. The characteristics of SNs
motivate the development of new classes of distributed es-
timation and control algorithms, which explore these systems’
limited power, computing and communication capabilities.It is
important that the algorithms have tuning parameters that can
be adjusted according to the demands set by the applications.
In this paper, we investigate a distributed estimation algorithm
for tracking an unknown time-varying physical variable.
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The new estimator for SNs presented in this paper belongs
to a class of recently developed filtering algorithms that exploit
in-network computing[6]. The scalability of these algorithms
is based on that node operates using only local information.
Suitable cooperation between neighboring nodes improves the
estimation quality considerably. Using sensor readings from
more than one sensor, for example, can overcome intrinsic
performance limitations due to uncertainty and noise present
in individual devices.

In-network computing thus differs from the traditional ar-
chitecture where sensors simply provide raw data to a fusion
center. By letting the network do the computations, it is
possible to reach a scalable, fault tolerant and flexible design.
The drawback is that such a system is more difficult to analyze,
as it is an asynchronous distributed computing system [7]
with inputs and dynamics coupled to a physical environment.
Despite current research activity and major progress, the theo-
retical understanding is far from satisfactory of these systems,
exposed to link and node failures, packet drops, restricted
power consumption etc.

A. Main Contribution

The main contribution of this paper is a novel distributed
minimum variance estimator. A time-varying signal is jointly
tracked by a SN, in which each node computes an estimate as
a weighted sum of its own and its neighbors’ measurements
and estimates. The filter weights are time varying and updated
locally. The filter has a cascade structure with an inner loop
producing the state estimate and an outer loop producing an
estimate of the error covariance. The state estimate is obtained
as the solution of an optimization problem with quadratic cost
function and quadratic constraints. We show that the problem
has a distributed implementation with conditions that can be
locally checked. It is argued that the estimator is practically
stable if the signal to track is slowly varying, so the estimate of
each node converges to a neighborhood of the signal to track.
The estimate in each node has consequently a small variance
and a small bias. A bound on the estimation error variance,
which is linear in the measurement noise variance and decays
with the number of neighboring nodes, is presented. The
algorithm is thus characterized by a trade-off between the
amount of communication and the resulting estimation quality.
Compared to similar distributed algorithms presented in the
literature, the one introduced in this paper features better
estimates, but at the cost of a slightly increased computational
complexity. These aspects are illustrated in the implementation
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discussion and computer simulations exposition in the latter
part of the paper.

B. Related Work

Distributed signal processing is a very active research area
due to the recent developments in networking, computer and
sensor technologies.

The estimator presented in this paper has two particular
characteristics: it does not rely on a model of the signal to
track, and its filter coefficients are time varying. It is related
to recent contributions on low-pass filtering by diffusion
mechanisms, e.g., [1]–[13]. Many of these papers focus on
diffusion mechanisms to have each node of the network obtain
the average of the initial samples of the network nodes. Major
progress has been made in understanding the convergence
behavior of these consensus or state-agreement approaches.
In [11], a scheme for sensor fusion based on a consensus filter
is proposed. Here, each node computes a local weighted least-
squares estimate that is shown to converge to the maximum-
likelihood solution for the overall network. An extension of
this approach is presented in [14], where the authors study
a distributed average computation of a time-varying signal,
when the signal is affected by a zero-mean noise. A convex
optimization problem is posed to compute the edge weights,
which each node uses to minimize the least mean square devi-
ation of the estimates. The same linear filter is also considered
in [15], where the weights are computed off-line to speed up
the computation of the averages. Further characterizationof
consensus filters for distributed sensor fusion is given in [13].

Another approach to distributed estimation is based on non-
linear filters using self-synchronization and coupling functions,
e.g., [16]–[19]. In this case, the estimate of each node is
provided by the state of a nonlinear dynamical system. This
system is coupled to some of the other nodes by a static
coupling function. Some conditions on the coupling function
that lead to asymptotic state synchronization are investigated
in [19].

Distributed filtering using model-based approaches is stud-
ied in various wireless network contexts, e.g., [20]–[24]. Dis-
tributed Kalman filters and more recently a combination of the
diffusion mechanism, discussed previously, with distributed
Kalman filtering, e.g., [12], [25] have been proposed. A
plausible approach is to communicate the estimates of the local
Kalman filters, and then average these values using a diffusion
strategy.

The originality of our approach is based on:

• Our estimator tracks a time-varying signal, while [9]–[11]
are limited to averaging initial samples.

• Our approach does not require a model of the system that
generates the signal to track, in contrast to model-based
approaches, e.g., [12], [24].

• We do not impose a pre-assigned coupling law among
the nodes as in [19].

• Compared to [11]–[13], we do not rely on the Laplacian
matrix associated to the communication graph, but con-
sider a more general model of the filter structure.

• Our filter parameters are computed through distributed
algorithms, whereas for example [14] and [15] rely on
centralized algorithms for designing the filters.

• With respect to our own early contributions [1], [2],
where we extended the algorithms in [11]–[13] by de-
signing the filter weights such that the variance of the
estimation errors is minimized, here we improve the filter
design considerably and we characterize the performance
limit of the filter.

C. Outline

SectionII presents the distributed estimation problem con-
sidered throughout the paper. The distributed estimator design
is discussed in SectionIII . A distributed minimum variance
optimization problem is posed and by restricting the set of
admissible filter weights it is possible to obtain a solution
where the error convergence is guaranteed. A bound on the
estimation error variance is also computed. The latter part
of Section III discusses estimation of the error covariance.
SectionIV presents the detail of the implementation of the
estimation algorithm. Numerical results illustrating theperfor-
mance of the proposed estimator and comparing it to some
related proposals are also given. Finally, SectionV concludes
the paper.

D. Notation

We denote the set of non-negative integers asN0 =
{0, 1, 2, . . .}. With | · | we denote either absolute value or
cardinality, depending on the context. With‖ ·‖ we denote the
ℓ2-norm of a vector and the spectral norm of a matrix. Given a
matrixA ∈ Rn×n, we denote withλr(A), 1 ≤ r ≤ n, its r-th
eigenvalue, withλmin(A) = λ1(A) and λmax(A) = λn(A)
being the minimum and maximum eigenvalue, respectively,
where the order is taken with respect to the real part. We refer
to its largest singular value asγmax(A). The trace ofA is
denotedtrA. With I and 1 we denote the identity matrix
and the vector(1, . . . , 1)T , respectively. Given a stochastic
variablex we denote byEx its expected value. For the sake of
notational simplicity, we disregard the time dependence when
it is clear from the context. We defineN0 = N ∪ {0}.

II. PRELIMINARIES

A. Problem Formulation

ConsiderN > 1 sensor nodes placed at random and static
positions in space. We assume that each node measures a
common scalar signald(t) affected by additive noise:

ui(t) = d(t) + vi(t) , i = 1, . . . , N ,

with t ∈ N0 and wherevi(t) is zero-mean white noise. Let us
collect measurements and noise variables in vectors,u(t) =
(u1(t), . . . , uN(t))T and v(t) = (v1(t), . . . , vN (t))T , so that
we can rewrite the previous equation as

u(t) = d(t)1 + v(t) , t ∈ N0 .

The covariance matrix ofv(t) is assumed to be diagonal
Σ = σ2I, so vi(t) andvj(t), for i 6= j, are uncorrelated. The
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additive noise, in each node, can be averaged out only if nodes
communicate measurements or estimates. The communication
rate of the measurements and estimates should be just fast
enough to track the variations ofd(t). Indeed, increasing the
sampling rate, in general, is not beneficial because measure-
ments might then be affected by auto-correlated noise.

It is convenient to model the communication network as an
undirected graphG = (V , E), whereV = {1, . . . , N} is the
vertex set andE ⊆ V × V the edge set. We assume that if
(i, j) ∈ E then (j, i) ∈ E , so that the direction of the edges
can be dropped when representing the network. The graphG
is said to be connected if there is a sequence of edges inE that
can be traversed to go from any vertex to any other vertex.

In the sequel, we denote the set of neighbors of nodei ∈ V
plus the node itself as

Ni = {j ∈ V : (j, i) ∈ E} ∪ {(i, i)} .

The estimation algorithm we propose is such that a nodei
computes an estimatexi(t) of d(t) by taking a linear combi-
nation of neighboring estimates and measures

xi(t) =
∑

j∈Ni

kij(t)xj(t− 1) +
∑

j∈Ni

hij(t)uj(t) . (II.1)

We assume that neighboring estimates and measurements
are always successfully received, i.e., there are no packet
losses. This assumption is obviously plausible for wired con-
nections, but it is still valid in wireless networks if certain
assumptions hold true. More specifically, the designed esti-
mator is suitable in wireless networks where the sampling
time between measurements is long compared to the coherence
time of the wireless channel (which is around some hundreds
of milliseconds) and an Automatic Repeat Request (ARQ)
protocol is used. Under such assumptions, if the wireless
channel does not allow a packet to be successfully received at
a given time instance, there is enough time to detect and re-
transmit erroneous packets until they are successfully received.
These assumptions are representative of the IEEE 802.11b
and IEEE 802.11g [26], which have been actually used for
distributed estimation and control algorithms of unmanned
aerial vehicles [27].

We assume that for each nodei, the algorithm is initialized
with xj(0) = ui(0), j ∈ Ni. In vector notation, we have

x(t) = K(t)x(t− 1) +H(t)u(t) . (II.2)

K(t) andH(t) can be interpreted as the adjacency matrices
of two graphs with time-varying weights. These graphs are
compatible with the underlying communication network rep-
resented byG.

Given a SN modeled as a connected graphG, we have the
following design problem: find time-varying matricesK(t)
and H(t), compatible withG, such that the signald(t) is
consistently estimated and the variance of the estimate is
minimized. Moreover, the solution should be distributed in
the sense that the computation ofkij(t) andhij(t) should be
performed locally by nodei.

B. Convergence of the Centralized Estimation Error

In this section we derive conditions onK(t) andH(t) that
guarantee the estimation error to converge. Define the estima-
tion errore(t) = x(t)−d(t)1 . Introduceδ(t) = d(t)−d(t−1),
so that the error dynamics can be described as

e(t) = K(t)e(t− 1) + d(t)(K(t) +H(t) − I)1

− δ(t)K(t)1 +H(t)v(t) . (II.3)

Taking the expected value with respect to the stochastic
variablev(t), we obtain

E e(t) = K(t)E e(t− 1) + d(t)(K(t) +H(t) − I)1

− δ(t)K(t)1 . (II.4)

Proposition II.1. Consider the system Equation(II.3). Assume
that

(K(t) +H(t))1 = 1 , (II.5)

and that there exists0 ≤ γ0 < 1 such that

γmax(K(t)) ≤ γ0 (II.6)

for all t ∈ N0.
(i) If H(t)1 = 1 , for all t ∈ N0, then

lim
t→+∞

E e(t) = 0 .

(ii) If |δ(t)| < ∆, for all t ∈ N0, then

lim
t→+∞

‖E e(t)‖ ≤
√
N∆γ0

1 − γ0
. (II.7)

Proof: If (K(t)+H(t))1 = 1 then the system equation
reduces to

E e(t) = K(t)E e(t− 1) + δ(t)(H(t) − I)1 . (II.8)

(i) If H(t)1 = 1 , then (II.8) becomes E e(t) =
K(t)E e(t − 1). Let us consider the functionV (t) =
‖E e(t)‖. It follows that

V (t) ≤ ‖K(t)‖V (t− 1) ≤ γ0V (t− 1) ≤ γt0V (0) ,

which implies thatlimt→+∞ E e(t) = 0.
(ii) In this case, we haveH(t)1 − 1 = −K(t)1 and thus

the system Equation (II.3) becomes

E e(t) = K(t)E e(t− 1) − δ(t)K(t)1 .

With V (t) = ‖E e(t)‖, we have

V (t) ≤ ‖K(t)‖V (t− 1) + ‖K(t)‖
√
N∆

≤ γ0V (t− 1) + γ0

√
N∆

≤ γt0V (0) + γ0
1 − γt0
1 − γ0

√
N∆

Taking the limit for t→ +∞ we obtained the result.

Proposition II.1(i) provides the conditionH(t)1 = 1

under which the estimate is unbiased. It is possible to show
that in this case the variance is minimized ifK(t) = 0 and

hij(t) = hji(t) =







1

|Ni|
if j ∈ Ni

0 otherwise.
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Note that nodes do not use any memory and that the error
variance at each node is proportional to its neighborhood size.
However, ifd(t) is slowly varying, then, under the assumptions
of PropositionII.1(ii), it is possible to guarantee that‖E e(t)‖
tends to a neighborhood of the origin, but the estimate might
be biased. Note also that‖E e(t)‖ is a cumulative bias, i.e., it
is a function of the sum of theN biases of individual nodes.

The size of the cumulative bias can be kept small with
respect to the signal to track by defining a proper value of
γ0. In particular, Equation (II.7) can be related to the Signal-
to-Noise Ratio (SNR) of the average of the estimate as follows.
Let Pd denote the average power ofd and letPb denote the
desired power of the biases of the average of the estimates.
Then, we define the desired SNR as SNR= Pd/Pb. Since
there areN nodes, we consider the average SNR of each node
asΥ = SNR/N . Let us assume that we want the estimator to
guarantee that the right-hand side of Equation (II.7) be equal
to this desired

√
SNR, i.e., that

γ0 =

√
Υ√

Υ + ∆
.

The right-hand side is useful in the tuning of the estimator.
Hence, we denote it asf(∆,Υ). By choosing an appropriate
Υ, we have a guaranteed convergence property of the estimator
given by the correspondingf(∆,Υ). This function will allow
us to relate the size of the bias of estimates with the variations
of the signal to track, and the stability of the estimates, aswe
see in the next sections.

III. D ISTRIBUTED ESTIMATOR DESIGN

In this section we describe how each node computes adap-
tive weights to minimize its estimation error variance. Notice
that, in order to guarantee that the estimation error of the
overall sensor network, in average, converges to a neighbor
of the origin, each node needs to locally compute the row-
elements ofK(t) and H(t) so that conditions in Proposi-
tion II.1 are fulfilled. The condition(K(t) + H(t))1 = 1

is easily handled in a distributed way, as it states that the
sum of the row-elements ofK(t) andH(t) need to sum up
to one. The bound on the maximum singular value ofK(t),
however, requires some transformations so that new conditions
on the row-elements ofK(t) fulfill γmax(K(t)) ≤ f(∆,Υ).
It turns out that it is possible to determine a local condition,
∑

j∈Ni
k2
ij ≤ ψi, whereψi is a constant that can be computed

locally by the nodes. We then pose a optimization problem
for finding optimal weights that minimize the error variance
in each node, where the previous conditions are considered
as constraints. An important aspect of the distributed optimal
solution is that the weights depend on the error covariance
matrix, which is not available at each node. We end this section
by discussing a way of estimating it.

A. Distributed Variance Minimization

Let Mi = |Ni|, which denotes the number of neighbors of
nodei, including the node itself. Collect the estimation errors

available at nodei in the vectorǫi ∈ RMi . The elements of
ǫi are ordered according to node indices:

ǫi = (ei1 , . . . , eiMi
)T , i1 < · · · < iMi

.

Similarly, we introduce vectorsκTi (t), ηTi (t) ∈ RMi corre-
sponding to the non-zero elements of rowi of the matrices
K(t) andH(t), respectively, and ordered according to node
indices.

The expected value of the estimation error at nodei can be
written as

E ei(t) = κTi (t)E ǫi(t− 1) − κTi (t)δ(t)1 , (III.1)

where we used the fact thatd(t) − d(t − 1) = δ(t) and
that (K(t) + H(t))1 = 1 . Note that the latter inequality
is equivalent to(κi(t) + ηi(t))

T 1 = 1. We assume that
ei(0) = ui(0). Hence

E (ei(t) − E ei(t))
2 = κTi (t)Γi(t− 1)κi(t) + σ2ηTi (t)ηi(t) ,

where Γi(t) = E (ǫi(t) − E ǫi(t))(ǫi(t) − E ǫi(t))
T . To

minimize the variance of the estimation error in each node,
we need to determineκi(t) and ηi(t) so that the previous
expression is minimized at each time instant. We have the
following optimization problem:

P1 : min
κi(t),ηi(t)

κTi (t)Γi(t− 1)κi(t) + σ2ηTi (t)ηi(t)

(III.2)

s.t. (κi(t) + ηi(t))
T
1 = 1 , (III.3)

γmax(K(t)) ≤ f(∆,Υ) . (III.4)

The inequality constraint (III.4) is still global, since
γmax(K(t)) depends on allκi(t), i = 1, . . . , N . We show
next that it can be replaced by the local constraint

‖κi(t)‖ ≤ ψi , t ∈ N0 , (III.5)

whereψi > 0 is a constant that can be computed locally. The
new constraint, however, even though ensure the stability of
the estimation error, leads to a distributed solution whichis in
general different from the centralized one.

For i = 1, . . . , N , define the setΘi = {j 6= i : Nj ∩
Ni 6= ∅}, which is the collection of nodes located at two hops
distance from nodei plus neighbor nodes ofi. We have the
following result.

Proposition III.1. Suppose there existψi > 0, i = 1, . . . , N ,
such that

ψi +
√

ψi
∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj ≤ f2(∆,Υ) , (III.6)

whereα(i)
i,j , α

(j)
i,j ∈ (0, 1) are such that

∑

c∈Nj∩Ni

k2
ic ≤ α

(i)
i,j

Mi
∑

r=1

κ2
iir

∑

c∈Nj∩Ni

k2
jc ≤ α

(j)
i,j

Mj
∑

r=1

κ2
jir .

If ‖κi(t)‖2 ≤ ψi, i = 1, . . . , N , thenγmax(K(t)) ≤ f(∆,Υ).

Proof: We use Geršgorin to bound the eigenvalues of
the matrixKKT , i.e., the singular values ofK. The follow-
ing relations hold:[KKT ]ii =

∑Mi

c=1 k
2
ic and [KKT ]ij =
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∑N
c=1 kickjc. By the Geršgorin Theorem we know that for

r = 1, . . . , N

λr(KK
T ) ∈

N
⋃

i=1

{

z ∈ R : |z − [KKT ]ii| ≤ Ri(KK
T )
}

with

Ri(KK
T ) =

N
∑

j=1

j 6=i

∣

∣[KKT ]ij
∣

∣ =
N
∑

j=1

j 6=i

∣

∣

∣

∣

∣

N
∑

c=1

kickjc

∣

∣

∣

∣

∣

.

Now the inner sum inRi(KKT ) is non-zero only forc ∈
Nj ∩Ni. Thus,

Ri(KK
T ) =

∑

j∈Θi

∣

∣

∣

∣

∣

∣

∑

c∈Nj∩Ni

kickjc

∣

∣

∣

∣

∣

∣

.

Using the Cauchy-Schwarz inequality,
∣

∣

∣

∣

∣

∣

∑

c∈Nj∩Ni

kickjc

∣

∣

∣

∣

∣

∣

2

≤
∑

c∈Nj∩Ni

k2
ic

∑

c∈Nj∩Ni

k2
jc.

Then,
N
∑

j=1

j 6=i

∣

∣

∣

∣

∣

N
∑

c=1

kickjc

∣

∣

∣

∣

∣

≤
∑

j∈Θi

√

∑

c∈Nj∩Ni

k2
ic

∑

c∈Nj∩Ni

k2
jc

≤
∑

j∈Θi

√

√

√

√α
(i)
i,j

Mi
∑

r=1

κ2
iir
α

(j)
i,j

Mj
∑

r=1

κ2
jjr

=

√

√

√

√

Mi
∑

r=1

κ2
iir

·
∑

j∈Θi

√

√

√

√α
(i)
i,jα

(j)
i,j

Mj
∑

r=1

κ2
jjr

.

Hence,

λr(KK
T ) ∈

N
⋃

i=1







z ∈ C :

∣

∣

∣

∣

∣

z −
Mi
∑

r=1

κ2
iir

∣

∣

∣

∣

∣

≤

√

√

√

√

Mi
∑

r=1

κ2
iir

·

∑

j∈Θi

√

√

√

√α
(i)
i,jα

(j)
i,j

Mj
∑

r=1

κ2
jjr











From the hypothesis that‖κi‖ =
∑Mi

r=1 κ
2
iir ≤ ψi and (III.6),

then

Mi
∑

r=1

κ2
ic +

√

√

√

√

Mi
∑

r=1

κ2
iir

·
∑

j∈Θi

√

√

√

√

Mj
∑

r=1

α
(i)
i,jα

(j)
i,j κ

2
jjr

≤ f2(∆,Υ) .

Henceγmax(K) ≤ f(∆,Υ).
PropositionIII.1 provides a simple local condition on the

filter coefficients such thatγmax(K) ≤ f(∆,Υ). We can
expect that PropositionIII.1 is in general conservative, be-
cause no a-priori knowledge of the network topology is used,
the proof relies on the Geršgorin theorem and the Cauchy-
Schwartz inequality. There are many other ways to bound the
eigenvalues of a matrix by its elements than the one used in
the proof above, e.g., [28, pages 378–389]. However, we do
not know of any other bounds requiring only local information.

Further, the Perron-Frobenius theory cannot be directly applied
to bound the eigenvalues, because we make no assumption on
the sign of the elements ofK(t).

The parametersα(i)
i,j andα(j)

i,j in PropositionIII.1 can all be
set to one. However, this yields very conservative bounds on
the maximum eigenvalue ofKKT . In SectionIV, we show
how to chose these parameters to avoid bounds that are too
conservative.

B. Optimal Weights for Variance Minimization

Using previous results, we consider the following local
optimization problem:

P2 : min
κi(t),ηi(t)

κi(t)
TΓi(t− 1)κi(t) + σ2ηi(t)

T ηi(t)

(III.7)

s.t. (κi(t) + ηi(t))
T
1 = 1

‖κi‖2 ≤ ψi , (III.8)

We remark here that ProblemP2 has a different solution with
respect to ProblemP1, since the constraint (III.4) has been
replaced with (III.8). ProblemP2 is convex. In fact, the cost
function is convex, asΓ(t − 1) is positive definite, since it
represents the covariance matrix of Gaussian random variable,
and the two constraints are also convex. The problem admits
a strict interior point solution, corresponding toκi(t) = 0 and
ηi(t)1 = 1. Thus, Slater’s condition is satisfied and strong
duality holds [29, pag. 226]. The problem, however, does not
have a closed form solution: we need to rely on numerical
algorithms to derive the optimalκi(t) andηi(t). The following
proposition provides a specific characterization of the solution.

Proposition III.2. For a given positive definite matrixΓi(t−
1), the solution to problemP2 is given by

κi(t) =
σ2(Γi(t− 1) + ξiI)

−1 1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
(III.9)

ηi(t) =
1

σ2 1 T (Γi(t− 1) + ξiI)−1 1 +Mi
, (III.10)

with ξi ∈
[

0,max(0, σ2/
√
Miψi − λmin(Γi(t− 1)))

]

.

Proof: Since the problem is convex and Slater’s condition
holds, the KKT conditions are both necessary and sufficient
for optimality. The primal and dual optimal points,(κ∗i , η

∗
i )

and (λ∗i , ν
∗
i ) respectively, need to satisfy

(κ∗i )
Tκ∗i − ψi ≤ 0 , (κ∗i + η∗i )

T
1 − 1 = 0

,ξ∗i ≥ 0 , ξ∗i ((κ
∗
i )
Tκ∗i − ψi) = 0 ,

2(Γi + λ∗i I)κ
∗
i + ν∗i 1 = 0 , 2σ2η∗i + ν∗i 1 = 0 ,

where the last two KKT conditions follow from
∇κi

L(κi, ηi, ξ, ν) and∇ηi
L(κi, ηi, ξ, ν) with the Lagrangian

L(κi, ηi, ξ, ν) = κTi Γiκi + σ2ηTi ηi + ξi
(

κTi κi − ψi
)

+ νi
(

(κi + ηi)
T
1 − 1

)

.

Combining these two KKT conditions with the second KKT
condition we obtain the optimal values. From the fourth KKT
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condition we have that eitherξ∗ = 0 or (κ∗i )
Tκ∗i = ψi, where

the second equality gives

σ4 1 T (Γi + ξ∗i I)
−2 1

(σ2 1 T (Γi + ξ∗i I)
−1 1 +Mi)

2 = ψi .

We are not able to provide a solutionξ∗ in closed form. Instead
we give a bound for the variable. From the previous equation,
we can enforce aξ ≥ 0 such that

(κ∗i )
Tκ∗i ≤

σ4‖(Γi + ξI)−1‖2

Mi
≤ σ4

Miλ2
min(Γi + ξI)

≤ ψi .

from where we obtain

ξ ≥ σ2

√
Miψi

− λmin(Γi) .

and for all these values ofξ the first KKT condition is always
satisfied. This implies that the optimal value ofξ must be in
the interval[0,max(0, σ2/

√
Miψi−λmin(Γi(t−1))], and the

theorem is proven.
PropositionIII.2 gives an interval within which the optimal

ξi can be found. The first constraint in problemP2 is similar
to the water-filling problem for power allocation in wireless
networks [29]. Analogously to that problem, simple search
algorithms such as a bisection algorithm, can be consideredto
solve forξi numerically. Note that each nodei needs to know
the covariance matrixΓi(t− 1) to compute the weights. It is
important to notice that the problemP2 does not have the same
solution as the problemP1, as the constraints (III.4) and (III.8)
are not equivalent, although if (III.8) holds then (III.4) holds
as well.

C. Bounds on the Error Variance

The optimal weights from PropositionIII.2 gives the fol-
lowing estimation error variance.

Proposition III.3. Let κi(t) andηi(t) be an optimal solution
given by(III.9) and (III.10). Then

E (ei(0) − E ei(0))2 = σ2

E (ei(t) − E ei(t))
2 ≤ σ2

Mi
,

t ∈ N0 \ {0}.

Proof: For t = 0, ei(0) = ui(0) = d(0) + vi(0), so
E (ei(0) − E ei(0))2 = σ2. For t > 0, the error variance of
the i-th node with the optimal values ofκi(t) andηi(t) is

E (ei(t) − E ei(t))
2 =

σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1

− σ4ξi 1
T (Γi(t− 1) + ξiI)

−2 1

(Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1 )
2

≤ σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1
.

SinceΓi(t − 1) is positive definite andξi ≥ 0, it holds that
1 T (Γi(t− 1) + ξiI)

−1 1 > 0. HenceE (ei(t)− E ei(t))
2 ≤

σ2

Mi
, t ∈ N0 \ {0} . This concludes the proof.

A consequence of PropositionIII.3 is that the estimation
error in each node is always upper bounded by the variance

of the estimator that computes the averages of theMi mea-
surementsui(t). The bound is obviously rather conservative,
since we do not use any knowledge about the covariance
matrix Γi(t). PropositionIII.2 helps us to improve the bound
in PropositionIII.3 as follows.

Corollary III.4. The optimal value ofκi(t) andηi(t) are such
that the error variance at nodei satisfies

E (ei(t)−E ei(t))
2 ≤ σ2

Mi +
(

∑

j∈Ni
M−1
j + (Miψi)−1/2

)−1 ,

t ∈ N0 \ {0}.

Proof: Using the result in PropositionIII.3 we have that

tr Γi(t−1) =
∑

j∈Ni

E (eij (t−1)− E eij (t−1))2 ≤
∑

j∈Ni

σ2

Mj
.

Thus

λmax(Γi(t− 1) + ξiI) ≤
∑

j∈Ni

σ2

Mj
+

+ max

(

0,
σ2

√
Miψi

− λmin(Γi(t− 1))

)

≤
∑

j∈Ni

σ2

Mj
+

σ2

√
Miψi

,

where we used the bound onξ determined in PropositionIII.2.
Since

1
T (Γi(t− 1) + ξiI)

−1
1 ≥ 1

λmax(Γi(t− 1) + ξiI)Mi

we have that

E (ei(t) − E ei(t))
2 ≤ σ2

Mi + σ2 1 T (Γi(t− 1) + ξiI)−1 1

≤ σ2

Mi +
(

∑

j∈Ni
M−1
j + (Miψi)−1/2

)−1 .

D. Distributed Computation of Constraints

The choice of the constantsψi, i = 1, . . . , N , in the
local constraint of problemP2 is critical for the perfor-
mance of the distributed estimator. Next we discuss how to
compute good values ofψi. The intuition is thatψi has
to be upper bounded to guarantee the estimation error to
converge, butψi should not be too small in order to put
large enough weights on the estimates. Indeed, from the
proof of PropositionIII.2 we see that ifψi is large then the
Lagrangian multiplierξi is small, since it must lie in the in
intervalmax

[

0, σ2/
√
Miψi − λmin(Γi(t− 1))

]

. From Propo-
sition III.3 (and CorollaryIII.4) it is clear that the estimation
error variance at the nodei decreases asξi decreases. Thus
the larger the value ofψi the lower the error variance.

The set of nonlinear equations in PropositionIII.1 provides
a tool to determine suitable values ofψi that guarantee
stability. Since we are interested in determining the largest



7

solution of the nonlinear equations, we consider the following
optimization problem:

max
ψ1,...,ψN

N
∑

i=1

ψi (III.11)

s.t. ψi +
√

ψi ·
∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj ≤ f2(∆,Υ)

(III.12)

ψi ≥ 0 ,

with i = 1, . . . , N . It is possible to show that previous problem
has a unique solution, which is the solution to the following
equations:

ψi +
√

ψi
∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj = f2(∆,Υ) i = 1, . . . , N .

(III.13)

Clearly the solution of such system of nonlinear equations
is interesting in our setup if it can be solved in a decentral-
ized fashion. The fact that in (III.13) only information from
neighboring nodes is required, and not of the entire network,
allows us to develop a decentralized algorithm to compute the
solution. Following [7, Pag.181–191], we consider the iterative
algorithm

ψ(t+ 1) = T (ψ(t)) = (T1(ψ(t)), . . . , TN(ψ(t))) (III.14)

with initial conditionψ(0) > 0 and withT : RN
+ → RN+ such

that

Ti(ψ(t)) =
1

4









√

√

√

√

√





∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj(t)





2

+ 4f2(∆,Υ)

−
∑

j∈Θi

√

α
(i)
i,jα

(j)
i,j ψj(t)





2

, (III.15)

whereTi(ψ) is obtained by solving (III.13) with respect toψi.
It is not difficult to show thatTi(ψ) is a contractive function.
The component solution method in [7] ensures that the fixed
point solution at which the iteration converges is the solution
of the nonlinear Equations (III.13). The computation of the
iteration (III.14) can be done distributively. Note that nodei
does not need to know the thresholdsψj , j 6= i, of all the other
nodes in the network, but those which concur in the definition
of Ti(ψ), i.e.,ψj that are associated to the nodes of the setΘi.
Thresholds corresponding to nodes at two hops from nodei
can be communicate to such node through its neighbors, with
little communication overhead. Notice that, the computation of
the thresholds and the associated communication takes place
before the nodes start to track the signald(t). Notice also that
the convergence rate of the component solution method for
block contraction converges geometrically to the fixed point.

E. Estimation of Error Covariance

Estimating the error covariance matrix is in general hard for
the problem considered in this paper, because the estimatoris

a time-varying system and the stochastic processx, and thus
e, is not stationary. However, if we consider the signals in the
quasi-stationary sense, estimation based on samples guarantees
to give good results. We have the following definition.

Definition III.5 ([30, pag. 34]). A signal s(t) : R → R is
said to be quasi-stationary if there exists a positive constant
C and a functionRs : R → R, such thats fulfills the following
conditions

(i) E s(t) = ms(t), |ms(t)| ≤ C for all t
(ii) E s(t)s(r) = Rs(t, r), |Rs(t, r)| ≤ C for all t and

lim
N→+∞

1

N

N
∑

t=1

Rs(t, t− τ) = Rs(τ)

for all τ .

It is easy to see that the time-varying linear system (II.2)
is uniformly bounded-input bounded-output stable [31, pag.
509]. If a quasi-stationary signal is the input of such system,
then its output is also quasi-stationary [32]. In our case, the
measurement signalu(t) is (component-wise) stationary and
ergodic and thus also quasi-stationary. This implies that also
x(t) is quasi-stationary, since it is the output of a uniformly
exponentially stable time-varying linear system. Thus, we
estimate the error covariance using the sample covariance.
Specifically, we have that the meanE ǫi = mǫi(t) and
covarianceΓi(t) can be estimated from samples as

m̂ǫi(t) =
1

t

t
∑

τ=0

ǫ̂i(τ) (III.16)

Γ̂i(τ) =
1

τ

t
∑

τ=0

(ǫ̂i(τ) − m̂ǫi(τ))(ǫ̂i(τ) − m̂ǫi(τ))
T ,

(III.17)

where ǫ̂i(t) is the an estimate of the error. Thus the problem
reduces to design an estimator ofǫi(t). Nodei has estimates
xij (t) and measurementsuij (t), ij ∈ Ni, available. Letx(i)(t)
andu(i)(t) denote the collection of all these variables. We can
model this data set as

x(i)(t) = d(t)1 + β(t) + w(t) , u(i)(t) = d(t)1 + v(t) ,

where β(t) ∈ RMi models the bias of the estimates and
w(t) is zero-mean Gaussian noise modelling the variance of
the estimator. Summarizing: nodei has available2Mi data
values in which half of the data are corrupted by a small
biased termβ(t) and a low variance noisew(t) and the other
half is corrupted by zero-mean Gaussian noisev(t) with high
variance. It is clear that using onlyu(i)(t) to generate an
estimated̂(t) of d(t), which could then be used to estimate
ǫ̂i(t) = x(i)(t) − d̂(t)1 , would have the advantage of being
unbiased. However, its covariance is rather large sinceMi is
typically small. Thus, using only measurements to estimate
d(t) yield to an over-estimate of the error, which results in poor
performance. On the other hand, using onlyx(i)(t) we obtain
an under-estimate of the error. This makes the weightsηi(t)
rapidly vanish and the signal measurements are discarded, thus
tracking becomes impossible. From these arguments, in order
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to use bothxi(t) and ui(t) we pose a linear least square
problem as follows:

min
d̂,β̂

∥

∥

∥

∥

(

xi

ui

)

−A

(

d̂

β̂

)∥

∥

∥

∥

2

s.t.
∥

∥B
(

d̂ β̂
)∥

∥

2 ≤ ρ

with A ∈ R2Mi×Mi+1 andB ∈ RMi×Mi+1

A =

(

1 I
1 0

)

, B =
(

0 I
)

,

andρ being the maxim value of the squared norm of the bias.
However, the previous problem is very difficult to solve in
a closed form, as it is a Quadratically Constrained Quadratic
Problem and it typically requires heavy numerical algorithms
to find the solution, such the transformation into a SDP
problem [29, pag. 653]. Notice also that, in general, the value
of ρ is not known in advance, being it a maximum value of the
cumulative bias ofMi nodes. We thus consider the following
regularized problem

min
d̂,β̂

∥

∥

∥

∥

(

xi

ui

)

−A

(

d̂

β̂

)∥

∥

∥

∥

2

+ ν

∥

∥

∥

∥

B

(

d̂

β̂

)∥

∥

∥

∥

2

(III.18)

whereν > 0 is a parameter whose choice is typically rather
difficult.

The solution of (III.18) is

(d̂, β̂)T = (xi, ui)TA
(

ATA+ νBTB
)−1

.

The inverse of the matrix in the previous equation can be
computed in closed form using the following result:

Proposition III.6. If ν > 0 then
(

ATA+ νBTB
)−1

=

=
1

Mi(1 + 2ν)





1 + ν −1 T

−1
Mi(1 + 2ν)I + 11 T

1 + ν



 (III.19)

Proof: By Schur’s complement we obtain
(

ATA+ νBTB
)−1

=

=













(

2Mi −
Mi

1 + ν

)−1

1 T (11 T − 2Mi(1 + ν)I)−1

(11 T − 2Mi(1 + ν)I)−11

(

(1 + ν)I − 11 T

2Mi

)−1













From [33] it follows that
(

(1 + ν)I − 11 T

2Mi

)−1

=
I

1 + ν
+

1 1 T

Mi(1 + 2ν)(1 + ν)
,

It is easy from here to show that the resulting matrix is (III.19).

Since we are interested in estimatingǫi(t) = x(t) − d(t)1
we observe that such an estimate is given byβ̂. From the
solution of (III.18), we have

β̂ =
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1 (III.20)

For the choice of the parameterν we propose to use the Gen-
eralized Cross-Validation (GCV) method [34]. This consists
in choosingν as

ν = arg min
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1
.

Typically the GCV approach is computationally expensive
since the trace of the matrix(ATA+ νBTB)−1 is difficult to
compute, but in our case we have a closed form representation
of the matrix, and thus the computation is not difficult.
However, it might be computationally difficult to carry out
the minimization. Observing that

ν = argmin
‖(ATA+ νBTB)−1AT (xi, ui)T ‖

tr (ATA+ νBTB)−1

≤ argmin
‖(ATA+ νBTB)−1AT ‖

tr (ATA+ νBTB)−1
‖(xi, ui)T ‖ . (III.21)

a sub-optimal value ofν can be computed solving the right
hand side of (III.21). Notice that the first term in the right
hand side of (III.21) is a function ofν that can be computed
off-line and stored in a look-up table at the node. Then, for
different data, the problem becomes that of searching in the
table.

Using (III.20) with the parameterν computed from (III.21)
we can then estimate the error mean and covariance matrix
applying (III.16) and (III.17), respectively.

IV. I MPLEMENTATION AND NUMERICAL RESULTS

This section presents the estimator structure and the algo-
rithmic implementation followed by some numerical results.

A. Estimator Structure and Implementation

Figure 1 summarizes the structure of the estimator imple-
mented in each node. The estimator has a cascade structure
with two sub-systems: the one to the left is an adaptive
filter that produces the estimate ofd; the one to the right
computes an estimate of the error covariance matrixΓi.
In the following, we discuss in some detail a pseudo-code
implementation of the blocks in the figure. The estimator is
presented as Algorithm1. Initially, the distributed computation
of the threshold is performed (lines1–8): nodei updates its
thresholdψi until a given precision̟ is reached. In the
computations ofψi, we choseα(i)

i,j = |Nj ∩ Ni|/(Mi − 1)

andα(j)
i,j = |Nj ∩ Ni|/(Mj − 1). This works well in practice

becausekiir , ir = 1, . . . ,Mi, are of similar magnitude.
Indeed, the stability of the average of the estimation error
established in SectionII-B, and the bounds on the error
variance in SectionIII-C, ensure that estimates among nodes
have similar performance.

Numerical results show that that the while-loop (lines 4–8)
converges after about 10–20 iterations.

The estimators for the local mean estimation error and the
local covariance matrix are then initialized (lines 9–10).The
main loop of the estimator is lines 13–24. Lines 14–19 are re-
lated to the left subsystem of Figure1. The optimal weights are
computed using Equations (III.9) and (III.10) (lines 17–18).
Notice that the optimal Lagrangian multiplierξi is computed
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u(t)

xi(t− 1)

xi(t)Γ̂i(t− 1)

Γ̂i(t− 1)

Γ̂i(t)

z−1

z−1

ǫ̂(t)

ψi Γ̂i(0)Γ̂i(0)xi(0)

xj∈Ni

ν

x+

i = κT (t)x+ηT (t)u

with weights (III.9)
and (III.10)

Eq. (III.20)
Eq. (III.16)
and (III.17)

Estimator block designed in subsectionIII-A –III-B Estimator block designed in sectionIII-E

Fig. 1. Block diagram of the proposed estimator. It consistsof two subsystems in a cascade coupling. The subsystem to theleft is an adaptive filter that
produces the estimate ofd(t) with small variance and bias. The subsystem to the right estimates the error covariance matrix.

Algorithm 1 Estimation algorithm for nodei
1. t := 0
2. ψi(t− 1) = 0
3. ψi(t) = 1/Mi

4. while |ψi(t) − ψi(t− 1)| ≥ ̟ = 10−10 do
5. ψi(t+ 1) = Ti(ψ(t))
6. collect thresholds from nodes inΘi

7. t := t+ 1
8. end while
9. t := 0

10. m̂ǫi
(t) := 0

11. Γ̂i(t) := σ2I
12. xi(t) := ui(t)
13. while foreverdo
14. Mi := |Ni|
15. t := t+ 1
16. ξi = bisection

(

max[0, σ2/
√
Mipsii − λmin(Γi(t− 1))]

)

17. κi(t) :=
σ2(Γ̂i(t− 1) + ξiI)

−1
1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

18. ηi(t) :=
1

Mi + σ2 1 T (Γ̂i(t− 1) + ξiI)−1 1

19. xi(t) :=
∑

j∈Ni
κij

(t)xj(t− 1) +
∑

j∈Ni
ηij

(t)uj(t)

20. β̂ :=
xi

1 + ν
− ν 1 Txi + (1 + ν)1 Tui

Mi(1 + 2ν)(1 + ν)
1

21. ǫ̂i := β̂

22. m̂ǫi
(t) :=

t− 1

t
m̂ǫi

(t− 1) +
1

t
ǫ̂i(t)

23. Γ̂i(t) :=
t− 1

t
Γ̂i(t − 1) +

1

t
(ǫ̂i(t) − m̂ǫi

(t))(ǫ̂i(t) −
m̂ǫi

(t))T

24. end while

using the functionbisection which takes as argument the
interval [0,max(0, σ2/

√
Miψi − λmin(Γi(t− 1)))] where the

optimal value lays. Notice that, if the nodes have limited

computational power, so that the minimum eigenvalue of the
matrix Γi(t− 1) cannot be exactly computed, an upper-bound
based on Geršgorin can be used instead. The estimate of
d(t) is computed in line 19. Lines 20–23 are related to the
right subsystem of Figure1. These lines implement the error
covariance estimation by solving the constrained least-squares
minimization problem described in subsectionIII-E. Sample
mean and covariance of the estimation error are updated in
lines 22–23. These formulas correspond to recursive imple-
mentation of (III.16) and (III.17).

Let us comment on the inversions of the estimated error
covariance matrix̂Γi in lines 17–18. In general, the dimension
of Γ̂i is not a problem because we consider cases when
the number of neighbors is small. Precautions have still to
be taken, because even though the error covariance matrix
Γi is always positive definite, its estimatêΓi may not be
positive definite before sufficient statistics are collected. In our
implementation, we use heuristics to ensure thatΓ̂i is positive
definite.

B. Numerical Results

Numerical simulations have been carried out in order to
validate performance of the proposed distributed estimator. We
compare the our estimator with some similar estimators related
to the literature. We consider the following five estimators:
E1: K = H = (I−L)/2 whereL is the Laplacian matrix

associated to the graphG.
E2: K = 0 andH = [hij ] with hij = 1/Mi if nodei and

j are connected, andhij = 0 otherwise. Thus, the
updated estimate is the average of the measurements.

E3: K = [kij ], where kii = 1/2Mi, kij = 1/Mi if
node i and j are connected,kij = 0 otherwise,
whereasH = [hij ] with Hii = 1/2Mi, andhij = 0
elsewhere. This is the average of the old estimates
and node’s single measurement.
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Fig. 2. Test signals used in the numerical simulations. Notethat d2, . . . , d5

are obtained fromd1(t) changing the frequency.

(a)

12

18

23

(b)

Fig. 3. Topology of the networks withN = 25 nodes (on the left) and
N = 35 (on the right) used in the simulations. For the network withN = 35,
three nodes are highlighted, corresponding to the identifier 12, 18, and 23.
They have the following number of neighbors:|N12| = 2, |N18| = 8, and
|N23| = 15. The node with maximum degree in all the network is node23.

E4: K = H with kij = 1/2Mi if node i and j
are connected, andi = j. The updated estimate
is the average of the old estimates and all local
measurements.

Ep: The estimator proposed in this paper.

The estimatorsE1, . . . , E4 are based on various heuristics.
They are related to proposals in the literature, e.g.,E1 uses
filter coefficients given by the Laplacian matrix, cf., [11]–[13].
It is important to note, however, that in general the weights
based on Laplacian do not ensure the minimization of the
variance of the estimation error.

Figure2 shows a set of test signalsd1, . . . , d5 that we have
used to benchmark the estimators. Note that the signals differ
only in their frequency content.

We suppose that we know a bound for∆ based on these
signals. We have set∆ to be10% larger than its actual value
for each signal. We have chosen the desired average SNR to
Υ = 10, see SectionII .

We consider two networksG25 andG35 with N = 25 and
N = 35 nodes, respectively, see Figure3. These networks are
obtained by distributing the nodes randomly over a squared
area of sizeN/3. The graph is then obtained by letting two
nodes communicate if their relative distance is less than
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Fig. 5. Zoom of some of the curves in Figure2. In particular, we plot the
measurements and estimates of the nodes12, 18 and23 having the minimum
degree, degree equal to the average degree of the network, and maximum,
respectively (see Figure3). In thick solid curve is shown the signald(t). The
dashed curves show the measurement and estimate at node 12, in dash-dotted
those at node 18 and the solid curves show those at node 23. Thehorizontal
lines in the the top-left figure are the interval within whichthe estimates
variate. We chose to have different scales to make more clearthe estimation
process.

We discuss in detail the distributed estimator over the network
network G35. Measurements and estimates for all nodes are
shown in Figure4 for d2. Clearly, the measurements are quite
noisy, and in particularσ2 = 1.5. All estimators,E1, . . . , E4

andEp, are able to track the signal, but the quality of the
estimates are varying quite a bit. It is evident thatE1 and
E2 give the worst estimates, whileEp performs best. The
relative performance betweenE1, . . . , E4 is rather obvious
given how their estimate is constructed, e.g.,E2 simply take
the average of the measurements whileE4 averages over
both measurements and estimates. By choosing the weights
appropriately, we see that the proposed estimatorEp gives sub-
stantially lower estimation variance. Figure5 shows a zoom of
Figure4 for the time interval[350, 450]. The figure compares
the measurements and estimates of the three nodes highlighted
in Figure 3. These nodes represent the node with minimum
connectivity (dashed curve), average connectivity (dash-dotted
curve) and maximum connectivity (solid curve). The thick line
correspond tod2. Note that the node with low connectivity
is not following d2 very well. We also see that the estimate
produced byE3 has a quite substantial bias. In general, we
have observed through extensive simulations thatE3 work well
for low-frequency signals to track, whereasE4 works better
for signal with higher frequency. Numerical studies of various
networks confirm the type of behaviors we see in Figures4
and5. We summarize a set of these simulations next. In order
to study performance of the estimators, we consider the mean
square error of the estimates of each node. Each estimator has
an initial transition phase, so to remove that we compute the
mean square error after70 steps. We average the mean square
error over all nodes of the network. The average we obtain,
we denote MSE. We define an improvement factor of our
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Fig. 4. Plots showingN = 35 realizations of the measurements and estimates at each nodefor each estimator and for the signald2(t).

estimator compared to the estimatorsE1, . . . , E4 as

µi =
MSE(Ei) − MSE(Ep)

MSE(Ei)
, i = 1, . . . , 4.

Table I reports MSE andµi for G25 and G35, and for all
test signalsd1, . . . , d5. Table I shows thatEp outperforms
all other estimators in all cases. Specifically,Ep exhibits
performance improvement from a minimum of15%, in the
case of networkG35 nodes andd1, up to 85% in the same
network andd4. The Laplacian-based estimatorE1 has poor
performance. Note thatE1 typically puts more weights to the
local estimate and measurement of a node than to the estimates
and measurements received from its neighbors. Because the
network is homogenous, this yields poor performance. When
the frequency of the test signal is high, the performance
improvement is not substantial forEp. The reason is found in
the fact that our estimator tries to keep low the bias, but paying
the price of an higher variance of the estimation error. Finally,
in Figure 6 we plotted the maximum singular value of the
matrixK(t) of Ep as a function of time for the simulations in
TableI. This plot verifies the validity of our design approach.

V. CONCLUSIONS

In this paper, we have presented a fully distributed minimum
variance estimator for sensor networks. The purpose of such
estimator is accurate tracking of a time varying signal using
noisy measurements. A mathematical framework is proposed
to design a filter, which runs locally in each node. It only
requires a cooperation among neighboring nodes. In order
to obtain a minimum variance estimator, we started from a
centralized optimization problem, and then we converted itinto
a decentralized problem transforming global constraints into
distributed ones. The filter structure is composed by a cascade
of two blocks: the first block computes the estimator coeffi-
cients at each time instance, and the second block estimates
the error covariance matrix needed, by the first block, at next
step. The estimator coefficients are designed such that the local
behavior of a node ensures the overall estimation process tobe
stable. We showed that the distributed estimator is stable,with
mean and variance of the estimation error bounded. Numerical
results proved that our filter outperforms existing solutions
proposed in literature, as well as other heuristic solutions.
Future work includes stability analysis of the filter with respect
to packet losses, and experimental validation.
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d1(t), ∆ = 0.118
Type of Estimator N = 25 N = 35

MSE µi MSE µi

E1: Laplacian Based 0.445 32.7 % 0.456 41.1 %
E2: Average ofu 0.659 54.5 % 0.567 52.6 %
E3: Average ofx andui 0.665 54.9 % 0.872 69.2 %
E4: Average ofx andu 0.372 19.6 % 0.316 15.1 %
Ep: Proposed Estimator 0.299 0.270

d2(t) ∆ = 0.059
Type of Estimator N = 25 N = 35

MSE µi MSE µi

E1: Laplacian Based 0.445 48.8 % 0.454 52.9 %
E2: Average ofu 0.658 65.4 % 0.565 62.2 %
E3: Average ofx andui 0.389 41.6 % 0.539 60.3 %
E4: Average ofx andu 0.366 37.7 % 0.313 31.6 %
Ep: Proposed Estimator 0.228 0.214

d3(t), ∆ = 0.040
Type of Estimator N = 25 N = 35

MSE µi MSE µi

E1: Laplacian Based 0.442 49.0 % 0.457 59.4 %
E2: Average ofu 0.662 65.8 % 0.572 67.6 %
E3: Average ofx andui 0.330 31.5 % 0.391 52.5 %
E4: Average ofx andu 0.367 38.4 % 0.315 41.2 %
Ep: Proposed Estimator 0.224 0.186

d4(t), ∆ = 0.033
Type of Estimator N = 25 N = 35

MSE µi MSE µi

E1: Laplacian Based 0.444 61.8 % 0.447 66.4 %
E2: Average ofu 0.663 74.3 % 0.564 73.4 %
E3: Average ofx andui 0.240 28.8 % 0.256 41.3 %
E4: Average ofx andu 0.370 53.8 % 0.308 51.2 %
Ep: Proposed Estimator 0.170 0.150

d5(t), ∆ = 0.000
Type of Estimator N = 25 N = 35

MSE µi MSE µi

E1: Laplacian Based 0.436 73.9 % 0.446 81 %
E2: Average ofu 0.656 83.8 % 0.560 85 %
E3: Average ofx andui 0.195 41.6 % 0.150 44 %
E4: Average ofx andu 0.358 68.2 % 0.305 72 %
Ep: Proposed Estimator 0.114 0.080

TABLE I
PERFORMANCE(MSE AND IMPROVEMENT FACTOR) OF THE PROPOSED

ESTIMATOR VERSUS SOME CHOSEN HEURISTICS. THE TABLE HAS BEEN
DIVIDED INTO FIVE SUB-TABLES, ONE FOR EACH TEST SIGNAL

d1(t)-d5(t), AND FOR DIFFERENT CASES OF THE NETWORK SIZE.
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