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Summary. In this paper we consider a widely studied problem in the robotics and

control communities, called consensus problem. The aim of the paper is to charac-

terize the relationship between the amount of information exchanged by the vehi-

cles and the speed of convergence to the consensus. Time-invariant communication

graphs that exhibit particular symmetries are shown to yield slow convergence if the

amount of information exchanged does not scale with the number of vehicles. On

the other hand, we show that retaining symmetries in time-varying communication

networks allows to increase the speed of convergence even in the presence of limited

information exchange.

1 Introduction

The design of coordination algorithms for multiple autonomous vehicles has
recently attracted large attention in the control and robotics communities.
This is mainly motivated by that multi-vehicle systems have application in
many areas, such as coordinated flocking of mobile vehicles [25, 26], cooper-
ative control of unmanned air and underwater vehicles [1, 3], multi-vehicle
tracking with limited sensor information [20].

Typically the coordinating vehicles need to communicate data in order
to execute a task. In particular they may need to agree on the value of
certain coordination state variables. One expects that, in order to achieve
coordination, the variables shared by the vehicles, converge to a common
value, asymptotically. The problem of designing controllers that lead to such
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asymptotic coordination are called coordinated consensus problems, see for
example [16, 7, 10, 21], and reference therein. The interest in these type of
problems is not limited to the field of mobile vehicles coordination but also
involves problems of synchronization [24, 19, 18].

The problem that mostly has been studied in the literature is the design
of control strategies that lead to consensus when each vehicle shares its infor-
mation with vehicles inside a neighborhood [16, 25] and the communication
network is time-varying [16, 26, 17].

Robustness to communication link failure [6] and the effects of time de-
lays [21] has also been considered recently. The consensus problem with time-
invariant communication networks have been studied in [23, 11]. Randomly
time-varying networks have also been analyzed in [14].

In this paper we consider the consensus problem from a different perspec-
tive. We are interested to characterize the relationship between the amount
of information exchanged by the vehicles and the achievable control perfor-
mance. More precisely, if we model the communication network by a directed
graph, in which each arc represents information transmission from one vehi-
cles to another one, we can expect that good control design methods have to
yield better performance for graphs that are more connected. In other words,
we model the communication effort of each vehicle as the number of other
vehicles it communicates with.

In order to formally characterize the trade off between control performance
and communication effort we make the following assumption: the graph topol-
ogy is independent of the relative position of the vehicles, and the vehicles are
described by an elementary first order model. The first hypothesis, that could
be realistic in networks of coupled oscillators [19], it is certainly less plausible
in applications involving mobile vehicles. Nevertheless a clear analysis of such
simplified model seems to be a necessary prerequisite in order to better un-
derstand more realistic scenarios. The motivation of describing vehicles with
an elementary model is that it allows a quite complete and clean analysis of
the problem.

The paper is organized as follows. In section 2 we formally define the con-
sensus problem. In particular we restrict to linear state feedbacks. We then
introduce an optimal control problem where the cost functional is related to
the convergence rate to the barycenter of the initial position of the vehicles.
Under some assumptions, described in section 3, it turns out that weighted
directed graphs for which the adjacency matrix is doubly stochastic, are com-
munication graphs that guarantee consensus. Such graphs can be interpreted
as a Markov chain and the convergence rate can be related to the mixing
rate of the chain [2]. The problem turns out to be treatable for a class of
time-invariant graphs with symmetries. In section 4 we introduce the class of
Cayley graphs defined on finite Abelian groups. Using tools for bounding the
mixing time of Markov chains defined on groups [2, 22] and algebraic proper-
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ties of finite Abelian groups we derive a bound on the convergence rate to the
consensus. The bound is a function of the number of vehicles and the incoming
arcs in each vertex of the communication graph, that is the total information
each vehicle receives. The main result shows that imposing symmetries in the
communication graph, and thus in the control structure, keeping bounded the
number of incoming arcs in each vertex, makes the convergence slower as the
number of vehicles increases. In section 5 we consider random solutions. In
these strategies the communication graph is chosen randomly at each time
step over a family of graphs with the constraint that the number of incoming
arcs in each vertex is constant. A simple mean square analysis, shows that, in
this way, we can improve the convergence rate obtained with time-invariant
communication graphs. This holds true even if the random choice is restricted
to families of graphs with symmetries. A similar analysis has been proposed
in [14] where however a different model of randomly time varying communi-
cation graph was proposed and less neat results were obtained. In section 6
some computer simulations are reported.

2 Problem formulation

Consider N > 1 vehicles whose dynamics are described by the following dis-
crete time state equations

x+
i = xi + ui i = 1, . . . , N

where xi ∈ R is the state and represents the vehicle position, x+
i is the updated

state and ui ∈ R is the control input. More compactly we can write

x+ = x+ u

where x, u ∈ R
N . The goal is to design a feedback control

u = Kx, K ∈ R
N×N

yielding the consensus, namely a control that asymptotically makes all the
states xi converging to the same value. More precisely, our objective is to
obtain a feedback matrix K such that the closed loop system

x+ = (I +K)x ,

for any initial condition x(0) ∈ R
N , satisfies

lim
t→∞

x(t) = αv

where v := (1, . . . , 1)T and where α is a scalar depending on x(0).
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Without further constraints the above problem is not particularly interest-
ing because it admits completely trivial solutions. Indeed, if I +K is asymp-
totically stable (condition which can be trivially obtained by choosing, for
instance, K = −I) then the rendezvous problem is clearly solved with α = 0
for all x(0). This is however an inefficient solution since, in this way, nonzero
initial states having equal components (in which the rendezvous has already
occurred) would produce a useless control action driving all the states to zero.
In the following we will impose the condition that the subspace generated by
the vector v consists of all equilibrium points, and this happens if and only if

Kv = 0 . (1)

From now on, when we say that K solves the rendezvous problem, we will
assume that condition (1) is verified. It is easy to see that in this way the
rendezvous problem is solved if and only if the following three conditions
hold:

(A)the only eigenvalue of I +K on the unit circle is 1;
(B)the eigenvalue 1 has algebraic multiplicity one (namely it is a simple root

of the characteristic polynomial of I +K) and v is its eigenvector;
(C)all the other eigenvalues are strictly inside the unit circle.

It is clear that, in order to achieve this goal, it is necessary that the ve-
hicles exchange their position. If no constraint is imposed on the amount of
information exchanged, it is still quite easy to solve the above problem.

In order to describe the information exchange associated to a specific feed-
back K it is useful to introduce certain graph theoretic ideas. To any feedback
K we associate a directed graph GK with set of vertices {1, . . . , N} in which
we add an arc from j to i whenever in the feedback matrix K the element
Kij 6= 0, meaning that in the control of xi it is used the knowledge of xj .
The graph GK is said to be the communication graph associated with K. Con-
versely, given any directed graph G with set of vertices {1, . . . , N}, we say
that a feedback K is compatible with G if GK is a subgraph of G (we will use
the notation GK ⊆ G). We will say that the rendezvous problem is solvable
on a graph G if there exists a feedback K compatible with G and solving the
rendezvous problem. From now on we will always assume that G contains all
loops (i, i): each system has access to its own state.

We would like to have a way to measure the performance of a given control
scheme achieving rendezvous. The way to quantify this performance is by no
means unique. Suppose we have defined a cost functional R = R(K) to be
minimized. We can then define

RG = min{R(K) | GK ⊆ G} .

We expect a meaningful cost functional to be sensitive to the amount infor-
mation exchanged by the vehicles, in other words we would like RG to show



Symmetries in the Coordinated Consensus Problem 5

certain range of variation among all the possible communication graphs that
can be considered.

The simplest performance index is related to the speed of convergence
towards the equilibrium point. Let P be any matrix such that Pv = v and its
spectrum (set of the eigenvalues) σ(P ) is contained in the closed disk centered
in 0 and having radius 1. Define

ρ(P ) =

{
1 if dimker(P − I) > 1
max{|λ| : λ ∈ σ(P ) \ {1}} if dim ker(P − I) = 1 ,

(2)

we can then take R(K) = ρ(I +K). The index R(K) describes the exponen-
tial rate of convergence of x(t) towards the equilibrium point. However, such
index does not show in general the desired sensitivity to the communication
constraints. Indeed, if the graph G is described by 1→ 2→ · · · → N , and we
consider the controller

K =










−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 0










which fulfill condition (1), we obtain R(K) = 0. Thus, adding any commu-
nication edge will not lower this index. It is clear however that the above
feedback have worse performance than others using a richer communication
graph. This means that the spectral radius is not sufficient to highlight these
differences.

We then need to refine the model. Since we are considering autonomous
vehicles it seems reasonable to consider the cost in terms of control effort, as
for instance

J(K) :=

∞∑

t=0

||u(t)||2 .

Then the performance index consisting on the pair (ρ(I + K), J(K)) would
better describe the problem. However this cost is hard to be analyzed. There-
fore we consider a simpler index which is related to the previous one, namely

J ′(K) :=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

t=0

u(t)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤
∞∑

t=0

||u(t)||2 .

Notice that, in our case, we have that

J ′ = ||x(∞)− x(0)||2

and so
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argmin{||x(∞)− x(0)||2 : x(∞) = αv , α ∈ R} =

(
1

N
vTx(0)

)

v .

In this paper we will consider as performance index the pair (ρ(I+K), J ′(K)),
which is relevant and treatable.

Notice that all feedback strategies K producing rendezvous points that
are the barycenter of the initial positions of the vehicles, namely such that

lim
t→∞

x(t) =

(
1

N
vTx(0)

)

v , (3)

are all optimal with respect to the index J ′. This feedback maps are called
consensus controls [21]. When K yields such a behavior, it will be called a
barycentric controller. It is easy to see that K is a barycentric controller if
and only if

vTK = 0 . (4)

Thus if we restrict to barycentric controllers that satisfy (1) then the perfor-
mance index of interest is ρ(I +K).

Moreover if we consider the displacement from the barycenter

∆(t) = x(t)−

(
1

N
vTx(0)

)

v ,

it is immediate to check that, ∆(t) satisfy the same closed loop equation than
x(t). In fact we have

∆(t+ 1) = (I +K)∆(t) . (5)

Notice that the initial condition satisfies

< ∆(0), v >= 0 . (6)

Hence the asymptotic behavior of our rendezvous control problem can equiv-
alently be studied by looking at the evolution (5) on the hyperplane char-
acterized by the condition (6). The index ρ(I + K) seems, in this context,
appropriate for analyzing the performance.

3 Stochastic and doubly stochastic matrices

If we restrict to control laws K making I +K a nonnegative matrix, condi-
tion (1) imposes that I+K is a stochastic matrix. Since the spectral structure
of such matrices is quite well known, this observation allows to understand
easily what are the conditions on the graph that will ensure the solvability of
the rendezvous problem. To exploit this we need to recall some notation and
results on directed graphs (the reader can further refer to textbooks on graph
theory such as [13]).
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Fix a directed graph G with set of vertices V and set of arcs E ⊆ V ×V . The
adjacency matrix A is a {0, 1} valued square matrix indexed by the elements
in V defined by (A)ij = 1 if and only (i, j) ∈ E . Define moreover the in-degree
of a a vertex i as deg(i) =

∑

j(A)ji. Vertices of in-degree equal to 0 are called
sinks. A graph is called in-regular (of degree k) if each vertex has in-degree
equal to k. A path in G consists of a sequences of vertices i1i2 . . . . . . ir such
that (i`, i`+1) ∈ E for every ` = 1, . . . , r − 1; i1 (resp. ir) is said to be the
initial (resp. terminal) vertex of the path. A vertex i is said to be connected to
a vertex j if there exists a path with initial vertex i and terminal vertex j. A
directed graph is said to be connected if given any pair of vertices i and j, at
least one of the two is connected to the other. A directed graph is said to be
irreducible if given any pair of vertices i and j, i is connected to j. Given any
directed graph G we can consider its irreducible components, namely strongly
connected subgraphs Gk with set of vertices Vk ⊆ V (for k = 1, . . . , s) and
set of arcs Ek = E ∩ (Vk × Vk) such that the sets Vk form a partition of V .
The various components may have connections among each other. We define
another directed graph TG with set of vertices {1, . . . , s} such that there is an
arc from k1 to k2 if there is an arc in G from a vertex in Vk1

to a vertex in
Vk2

. It can easily be shown that TG is always a union of disjoint trees.
Standard results on stochastic matrices [12, page 88 and 99] yield the

following proposition.

Proposition 1. Let G be a directed graph. The following conditions are equiv-
alent:

(i) The rendezvous problem is solvable on G.
(ii) TG is connected and has only one sink vertex.

Moreover if the above conditions are satisfied, any K such that I + K is
stochastic, GK = G and Kii 6= −1 for every i ∈ VG is a possible solution.

Among all possible solutions of the rendezvous problem, when the graph
G satisfies the properties of Proposition 1, a particularly simple one can be
written in terms of the adjacency matrix A of G. Consider indeed the matrix
P :

Pij =







(A)ji
deg(i) if deg(i) > 0

0 if deg(i) = 0

then K = P − I solves the rendezvous problem. Notice the explicit form that
the closed loop system assumes in this case:

x+
i = xi +

1

deg(i)

∑

j 6=i

(j,i)∈E

(xj − xi) . (7)
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If we restrict to control laws K making I+K a nonnegative matrix, conditions
(1) and (4) are equivalent to the fact that I + K is doubly stochastic. This
remark permits to obtain the following result (see [12]).

Proposition 2. Let G be a directed graph. The following conditions are equiv-
alent:

(i) The rendezvous problem on G admits a barycentric controller.
(ii) G is irreducible

Moreover if the above conditions are satisfied, any K such that I+K is doubly
stochastic, GK = G and Kii 6= −1 for every i ∈ V is a possible solution.

Notice that in the special case when the graph G is undirected, namely
(i, j) ∈ E if and only if (j, i) ∈ E , it follows that we can find solutions K to the
rendezvous problem that are symmetric and that therefore are automatically
doubly stochastic. One example is given by (7).

We expect the spectral radius to be a meaningful cost functional when
restricted to feedback controllers K such that I + K is doubly stochastic.
More precisely we conjecture that, by taking

ρds
G = min{ρ(K) | K doubly stochastic, GK ⊆ G} ,

G1 ⊂ G2 implies that ρG1
> ρG2

. However we have been not able to prove this
so far.

4 Symmetric Controllers

The analysis of the rendezvous problem and the corresponding controller syn-
thesis problem becomes more treatable if we limit our search to graphs G and
matrices K exhibiting symmetries. We will show however that these symme-
tries yield rather poor performance in terms of convergence rate.

In order to treat symmetries on a graph G in a general setting, we consider
Cayley graphs defined on Abelian groups. Let G be any finite Abelian group
of order |G| = N , and let S be a subset of G which contains the zero. The
Cayley graph G(G,S) is the directed graph with vertex set G and arc set

EG(G,S) = {(g, h) : h− g ∈ S} .

Notice that a Cayley graph is always in-regular: the in-degree of each vertex is
equal to |S|. Notice also that irreducibility can be checked at an algebraic level:
it is equivalent to the fact that the set S generates the group G which means
that any element in G can be expressed as a finite sum of (not necessarily
distinct) elements in S. If S is such that −S = S we say that S is inverse-
closed. In this case the graph obtained is undirected.
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A Cayley graph supports (stochastic) matrices; to construct them it is
sufficient to start from any function π : G → R such that π(g) = 0 if g 6∈ S.
Then define P by Pgh = π(g − h). Such a matrix will be called a Cayley
matrix (adapted to the Cayley graph G(G,S)). We will also say that P is the
Cayley matrix generated by the function π. To have candidate solutions to
our rendezvous problem, we of course need something more. Notice that if it
holds

∑

g π(g) = 1, then P satisfies both relations Pv = v and vTP = vT . In
the special case when π is a probability distribution (i.e. π(g) ≥ 0 for every
g) P is thus automatically a doubly stochastic matrix: such matrices P will
be called Cayley stochastic matrices and for the rest of this section we will
mostly work with them. Among the many possible choices of the probability
distribution π, there is one which is particularly simple: π(g) = 1/|S| for every
g ∈ S. In this case we have that

P =
1

|S|
A ,

where A is the adjacency matrix of the Cayley graph G(G,S).

Example 1. Let us consider the group ZN of integers moduloN and the Cayley
graph G(ZN , S) where S = {−1, 0, 1}. Notice that in this case S is inverse-
closed. Consider the uniform probability distribution

π(0) = π(1) = π(−1) = 1/3

The corresponding Cayley stochastic matrix is given by

P =








1/3 1/3 0 0 · · · 0 0 1/3
1/3 1/3 1/3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
1/3 0 0 0 · · · 0 1/3 1/3







.

Notice that in this case we have two symmetries. The first is that the graph
is undirected and the second that the graph is circulant. These symmetries
can be seen in the structure of the transition matrix P which, indeed, results
both symmetric and circulant.

The idea of considering Cayley graphs and Cayley stochastic matrices on
Abelian groups is helpful in order to compute, or at least bound, the cost
functional ρ(P ) defined in (2). We can indeed consider the minimum ρCayley

G

of the spectral radius ρ(P ) as P varies among the stochastic Cayley matrices
compatible with the given Cayley graph G. It will turn out that ρCayley

G can

be evaluated or estimated in many cases and clearly it holds ρCayley
G ≥ ρds

G .
Before continuing we give some short background notions on groups char-

acters and on harmonic analysis on groups, upon which the main results are
built.
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4.1 Cayley stochastic matrices on finite Abelian groups

Let G be a finite Abelian group of order N , and let C
∗ be the multiplicative

group of the nonzero complex numbers. A character on G is a group homo-
morphism χ : G → C

∗ (χ(g + h) = χ(g)χ(h) for all g, h ∈ G). Since we have
that

χ(g)N = χ(Ng) = χ(0) = 1 , ∀g ∈ G

it follows that χ takes values on the N th-roots of unity. The character χ0(g) =
1 for every g ∈ G is called the trivial character.

The set of all characters of the group G forms an Abelian group with
respect to the pointwise multiplication: it is called the character group and
denoted by Ĝ. The trivial character χ0 is the zero of Ĝ. It can be shown that
Ĝ is isomorphic to G, in particular its cardinality is N . If we consider the
vector space C

G of all functions from G to C with the canonical Hermitian
form

< f1, f2 >=
1

N

∑

g∈G

f1(g)f2(g) ,

it follows that Ĝ is an orthonormal basis of C
G.

The Fourier transform of a function f : G→ C is defined as

f̂ : Ĝ→ C , f̂(χ) =
∑

g∈G

χ(−g)f(g) .

Example 2. Consider again the group ZN . The characters are given by

χ`(j) = ei
2π
N
`j , j ∈ ZN , ` = 0, . . . , N − 1 .

The correspondence ` → χ` yields an explicit isomorphism between ZN and
ẐN . Given any function f : ZN → C, its Fourier transform is given by

f̂(χ`) =

N−1∑

j=0

f(j) e−i
2π
N
`j .

The cyclic case is instrumental to study characters for any finite Abelian
group. Indeed it is a well known result in algebra [15], which states that any
finite Abelian group G is isomorphic to a finite direct sum of cyclic groups.
In order to study characters of G we can therefore assume that G = ZN1

⊕
· · · ⊕ ZNr . It can be shown [2] that the characters of G are precisely the
maps (g1, g2, . . . , gr) 7→ χ1(g1)χ

2(g2) · · ·χ
r(gr) with χi ∈ Ĝi for i = 1, . . . , r.

In other terms, Ĝ is (isomorphic to) ẐN1
⊕ · · · ⊕ ẐNr . Fix now a Cayley

graph on G and a Cayley matrix P generated by the function π : G → R.
The spectral structure of P is very simple. To see this, first notice that P
can be interpreted as a linear function from C

G to itself: simply considering,
for f ∈ C

G, (Pf)(g) =
∑

h Pghf(h). Notice that the trivial character χ0
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corresponds to the vector v having all components equal to 1. For every χ ∈ Ĝ,
it holds

(Pχ)(g) =
∑

h∈G

Pghχ(h) =
∑

h∈G

π(g − h)χ(h) =
∑

h∈S

π(h)χ(g − h) = π̂(χ)χ(g) .

Hence, χ is an eigenfunction of P with eigenvalue π̂(χ). Since the characters
form an orthonormal basis it follows that P is diagonalizable and its spectrum
is given by

σ(P ) = {π̂(χ) | χ ∈ Ĝ} .

We can think of characters as linear functions from C to C
G:

χ : z 7→ zχ ,

and their adjoint as linear functionals on C
|G|:

χ∗ : f 7→< f, χ > .

With this notation, χχ∗ is a linear function from C
G to itself, projecting on

the eigenspace generated by χ. In this way, P can be represented as

P =
∑

χ∈Ĝ

π̂(χ)χχ∗ .

Conversely, it can easily be shown that given any θ : Ĝ→ C the matrix

P =
∑

χ∈Ĝ

θ(χ)χχ∗ ,

is a Cayley matrix generated by the Fourier transform π = θ̂.
Suppose now P is the closed loop matrix of a system x+ = Px. The

displacement from the barycenter can be represented as

∆ = (I − χ0χ
∗
0)x .

As we had already remarked ∆ is governed by the same law (see equation (5))

∆+ = P∆ .

The initial condition ∆0 is characterized by < ∆0, χ0 >. Notice that

∆t = P t∆0 =
∑

χ∈Ĝ

π̂(χ)tχ < ∆0, χ > .

Hence,

||∆t||
2 =

∑

χ∈Ĝ

|π̂(χ)|t| < ∆0, χ > |
2 .

This shows in a very simple way, in this case, the role of the spectral radius

ρ(P ) = max
χ6=χ0

|π̂(χ)|

in the convergence performance.
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4.2 The spectral radius for stochastic Cayley matrices.

The particular spectral structure of stochastic Cayley matrices allows to ob-
tain asymptotic results on the behavior of the spectral radius ρ(P ) and there-
fore on the speed of convergence of the corresponding control scheme. Let us
start with some examples.

Example 3. Consider the group ZN and the Cayley graph G(ZN , S), where
S = {0, 1}. Consider the probability distribution π on S described by

π(0) = 1− k , π(1) = k .

where k ∈ [0, 1]. The Fourier transform of π is

π̂(χ`) =
∑

g∈S

χ(−g)π(g) = 1− k + ke−i
2π
N
` , ` = 1, . . . , N − 1 .

In this case it can be shown that we have rendezvous stability if and only if
0 < k < 1 and that the rate of convergence is

ρ(P ) = max
1≤`≤N−1

∣
∣
∣1− k + ke−i

2π
N
`
∣
∣
∣ .

Hence, we have that

ρCayley
G = min

k
max

1≤`≤N−1

∣
∣
∣1− k + ke−i

2π
N
`
∣
∣
∣ .

The optimal ` and k are ` = 1 and k = 1/2 yielding

ρCayley
G =

(
1

2
+

1

2
cos

(
2π

N

)) 1

2

' 1−
π2

2

1

N2

where the last approximation is meant for N →∞.

Example 4. Consider the group ZN and the Cayley graph G(ZN , S), where S =
{−1, 0, 1, }. For the sake of simplicity we assume that N is even; very similar
results can be obtained for odd N . Consider the probability distribution π on
S described by

π(0) = k0 , π(1) = k1 , π(−1) = k−1 .

The Fourier transform of π is in this case given by

π̂(χ`) =
∑

g∈S

χ(−g)π(g) = k0 + k1e
−i 2π

N
` + k−1e

i 2π
N
` , ` = 1, . . . , N − 1 .

We thus have
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ρCayley
G = min

(k0,1,k−1)
max

1≤`≤N−1

∣
∣
∣k0 + k1e

−i 2π
N
` + k−1e

i 2π
N
`
∣
∣
∣ .

Symmetry and convexity arguments allow to say that a minimum is for sure
of the type k1 = k−1. With this assumption the cost functional reduces to

ρ(P ) = max
k1

{∣
∣
∣
∣
1− 2k1

(

1− cos

(
2π

N

))∣
∣
∣
∣
, |1− 4k1|

}

.

The minimum is achieved for

k0 =
1− cos

(
2π
N

)

3− cos
(

2π
N

) , k1 = k−1 =
1

3− cos
(

2π
N

)

and we have

ρCayley
G =

1 + cos
(

2π
N

)

3− cos
(

2π
N

) ' 1− 2π2 1

N2
(8)

where the last approximation is meant for N → +∞.

Notice the asymptotic behavior of previous two examples: the case of com-
munication exchange with two neighbors offer a better performance. However,
in both cases ρCayley

G → 1 for N → +∞. This fact is more general: if we keep
bounded the number of incoming arcs in a vertex, the spectral radius for
Abelian stochastic Cayley matrices will always converge to 1. This is the con-
tent of our main result.

Theorem 1. Let G be any finite Abelian group of order N and let S ⊆ G be
a subset with |S| = ν + 1. Let π be a probability measure associated to the
Cayley graph G(G,S). Then

ρCayley
G(G,S) ≥ 1− CN−2/ν ,

where C > 0 is a constant independent of G and S.

Proof. See Appendix A.

The consequence of theorem 1 we have that, if we consider any sequence of
Cayley stochastic matrices PN adapted on Abelian Cayley graphs (GN , SN )
such that |GN | = N and |SN | = o(lnN) then, necessarily, ρ(PN ) converges to
1.

Notice that in Example 4 we have ν = 2 and an asymptotic behavior
ρCayley
G ' 1 − 2π2N−2 while the lower bound of Theorem 1 is, in this case,

1 − 2π2N−1. Can we achieve the bound performance? In other words, is the
lower bound we have just found, tight? The following example shows that this
is the case.
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Example 5. Consider the group Z
ν
N and the Cayley graph G(ZνN , S), where

S = {0, e1, . . . , eν} where ej is the vector with all elements equal to 0 except
a 1 in position j. Consider the probability distribution π on S described by

π(0) = π(ei) =
1

ν + 1
, ∀i = 1, . . . , ν .

The Fourier transform of π is

π̂(χ`1 , . . . , χ`ν ) =
∑

g∈S

χ(−g)π(g) =
1

ν + 1



1 +

ν∑

j=1

e−i
2π
N
`j



 .

where `j = 1, . . . , N − 1 , j = 1, . . . , ν. We thus have that for this graph

ρG =
1

ν + 1
max

1≤`j≤N−1

∣
∣
∣
∣
∣
∣

ν +

ν∑

j=1

e−i
2π
N
`j

∣
∣
∣
∣
∣
∣

.

It is easy to see that the above min-max is reached by `j = 1 for every
j = 1, . . . , ν or when ∃h ∈ {1, ν} such that `h = 1 and for all j 6= h we have
`j = 0. This yields the value

ρG =

(
ν2 + 1

(ν + 1)2
+

2ν

(ν + 1)2
cos

(
2π

N

)) 1

2

' 1− C
π2

N2
= 1− C

π2

(Nν)2/ν

where C is a constant. Notice we have exactly obtained the lower bound
proven above.

5 Random communication graphs

5.1 Random circulant communication graph

A direct graph G = (V, E) is said to be a circulant directed graph if (i, j) ∈ E
implies that (i+ p mod N, j + p mod N) ∈ E where p ∈ N. Observe that in
a direct circulant graph each vertex has the same in-degree. In the following
sometimes we will refer to the in-degree of the graph, meaning the in-degree
of any of the vertices of the graph.

Let Ḡ the set of all circulant directed graphs G = (V, E) with in-degree ν+1
and such that the corresponding adjacency matrixA has aii 6= 0, ∀ 1 ≤ i ≤ N ,
meaning that, as we said perviously, each vehicle has access to its own state.

In this strategy we suppose that at each time instant t the communica-
tion graph G(t) is chosen randomly from the set Ḡ accordingly to a uniform
distribution. This is equivalent to impose that the adjacency matrix A(t) of
the communication graph G(t) is such that
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A(t) = I +

ν∑

i=1

Παi(t)

where Π is the following circulant matrix [8]

Π =












0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0












and where {α1(t)} , . . . , {αν(t)} are ν independent sequences of independent
random variables uniformly distributed over the alphabet X = {1, 2, . . . , N}.
We consider the following control law u(t)

u(t) =

(

k0I +

ν∑

i=1

kiΠ
αi(t)

)

x(t). (9)

The close loop system then becomes

x(t+ 1) =

(

(1 + k0)I +

ν∑

i=1

kiΠ
αi(t)

)

x(t) (10)

The system (10) can be regarded as a Markov jump linear system [4].
Notice that the state transition matrix in (10) is a circulant matrix and

since Πv = v we have that the conditions (1) is satisfied. If we restrict to
non-negative matrices then we have that the feedback gains k0, . . . , kν are
such that 1 + k0, k1, . . . , kν ≥ 0 and k0 +

∑ν
i=1 ki = 0.

We conclude this section by observing that this strategy has an evident
drawback from an implementation point of view : the same random choice,
done at every time instance, needs to be known by all vehicles. A possible
way to overcome this limitation is by using a predetermined pseudo-random
sequence whose starting seed is known to everybody.

5.2 Random communication graph with bounded in-degree

The strategy that we consider in this subsection is similar to the one presented
in the previous subsection, but it overcomes the implementation issues. In
this case we do not limit the time-varying communication graph G(t) to be
circulant. We assume that each vehicle, besides knowing its own position,
receives the state of ν vehicle chosen randomly and independently. Because
of this it can happen that the resulting communication graph G(t) could have
multiple arcs connecting the same pair of nodes.



16 Authors Suppressed Due to Excessive Length

The feedback control in this case is

u(t) = k0x(t) +
ν∑

i=1

kiEi(t)x(t) (11)

where {Ei(t)}, i = 1, . . . , ν, are ν independent sequences of independent ran-
dom processes taking value on the set of matrices

Υ :=
{

E ∈ {0, 1}N×N : Ev = v
}

and equally distributed in such a set. Roughly speaking, the set Υ is con-
stituted by all matrices with entries 0 or 1 that have exactly one element
equal to 1 in each row. Since Ei(t)v = v, for all i = 1, . . . , ν and all t ≥ 0,
we have that, as in the previous case, the in order for condition (1) to hold
and to have a non-negative matric, the feedback gains k0, . . . , kν must satisfy
1 + k0, k1, . . . , kν ≥ 0 and k0 +

∑ν
i=1 ki = 0.

The close loop system becomes

x(t+ 1) = (1 + k0)I +

ν∑

i=1

kiEi(t)x(t) . (12)

Notice that also the system (12) can be regarded as Markov jump linear
system.

5.3 Convergence and performance analysis

In order to study the asymptotic behavior of the two previous strategy, it is
convenient to introduce the variable y(t) that is defined in the following way.
Consider

Y = I −
1

N
vvT (13)

and let
y(t) = Y x(t). (14)

Notice that the component yi(t) of y(t), represents, by this definition, the
displacement of xi(t) from the barycenter of the initial position of the vehicles,
at the time instant t. Clearly we have that

lim
t→+∞

x(t) = αv (15)

if and only if
lim

t→+∞
y(t) = 0 . (16)

Note that it holds both Y Π = ΠY and Y E = Y EY where E is any matrix
in Υ . Then pre-multiplying (10) and (12) by Y we obtain



Symmetries in the Coordinated Consensus Problem 17

y(t+ 1) =

(

(1 + k0)I +

ν∑

i=1

kiΠ
αi(t)

)

y(t) (17)

if we consider the first strategy and

y(t+ 1) = F2(t) =

(

(1 + k0)I +

ν∑

i=1

kiEi(t)

)

y(t) (18)

In order to study the asymptotic properties of y(t) we consider E
[
‖y(t)‖2

]

where the expectation is taken over the set of the graph in which G(t) is
chosen. We then have the following definition.

Definition 1 ([9]). The jump linear Markov systems (17) and (18) are said
to be asymptotically second moment stable if for any fixed y(0) ∈ R

N it holds

lim
t→+∞

E
[
‖y(t)‖2

]
= 0. (19)

We can then state the two main results.

Proposition 3. The system (17) is asymptotically second moment stable for
any initial condition y(0) and for k0 = −ν/(1 + ν) and ki = 1/(1 + ν),
1 ≤ i ≤ ν. Moreover, for these values of ki we obtain the fasted convergence
rate and we have that

E
[
‖y(t)‖2

]
=

(
1

1 + ν

)t

‖y(0)‖2. (20)

Proof. See Appendix B.

Proposition 4. The system (18) is asymptotically second moment stable for
any initial condition y(0) and for k0 = −νN/(N +Nν− 1) and ki = N/(N +
Nν − 1), 1 ≤ i ≤ ν. Moreover, for these values of ki we obtain the fastest
convergence rate and we have that

E
[
‖y(t)‖2

]
=

(
N − 1

N(1 + ν)− 1

)t

‖y(0)‖2. (21)

Proof. See Appendix C.

Remark 1. Notice that the convergence rate obtained using the strategy with
random circulant communication graphs it does not depend on N and ensures
convergence even if ν = 1, which corresponds to the case when each vehicle
receives the state of at most one another vehicle. The strategy with random
communication graphs with in-degree bounded, attains the same converge
rate of the first only from N → +∞.

However notice that both strategies have a better convergence rate than
the one obtained using time-invariant communication graphs. This increase
of performance has obtained by randomizing the choice over a pre-assigned
family of graphs.
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Remark 2. Notice that by using random communication graphs with bounded
in-degree the vehicles, in general, will not reach the consensus at the barycen-
ter of the initial configurations, since

vT

(

k0I +

ν∑

i=1

kiEi(t)

)

6= vT (22)

It is meaningful to study where the vehicles will reach consensus with respect
to the barycenter of the initials conditions. In order to carry out this analy-
sis we consider the mean square distance from the barycenter of the initials
conditions namely we consider x(t)−vTx(0)v/N . We have the following result.

Proposition 5. The mean square distance to the barycenter of the initial con-
figuration of the vehicle is bounded, namely,

lim
t→∞

E
[
(x(t)− bv)(x(t)− bv)T

]
= α

1

N
x(0)T (I −Ω)x(0)

where

α =

∑ν
i=1 k

2
i

(1−N)
∑ν

1=1 k
2
i − k0N(k0 + 2)

and where b = vTx(0)/N , and Ω = vvT /N and where the ki make the sys-
tem (18) asymptotically second order stable.

Proof. See Appendix D.

Notice that when N → +∞ then the mean square distance to the
barycenter tends to zero. If we use the control gains k0 = − νN

N+Nν−1 and
k1 = · · · = kν = N/(N +Nν − 1) then we have that

lim
t→∞

E
[
(x(t)− bv)(x(t)− bv)T

]
=

1

N(N(1 + ν)− 1)
x(0)T (I −Ω)x(0) .

Notice that for fixed N if ν grows the mean square distance to the barycenter
becomes smaller.

6 Simulation results

In Figures 1-3, some computer simulation results are reported. The simu-
lations show the time evolution of the state of n = 10 vehicles when they
can exchange the state with at most one other vehicle, thus in this case we
have ν = 1. The initial condition for all the three simulations is the same
and the barycenter coordinate is 2.76. Figure 1 refers to the state evolution
for time-invariant communication graph when the Cayley graph is the ring
graph. Figure 2 refers to random circulant communication graph and Figure
3 refers to random communication graph with bounded in-degree. Notice that
the random strategies, as expected, exhibit a faster rate convergence and that
the random communication graph with bounded in-degree does not converge
to the barycenter (in this case the consensus is reached at 0.71).
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Fig. 1. Time-invariant Cayley graph with ν = 1.
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Fig. 2. Random circulant communication graph.

7 Conclusions

In this paper we have analyzed the relationship between the communication
graph and the convergence rate to the rendezvous point for a team of vehicles.
Modelling the communication graph with a Cayley graph defined on Abelian
groups, namely a graph with symmetries, we have been able to bound the
convergence rate. In particular we have proved that the convergence to the
barycenter of the initial configuration becomes slower and slower as the num-
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Fig. 3. Random communication graph with bounded in-degree.

ber of vehicles increases if the amount of information received by each vehicle
remain constant. We have also considered some particular random strategies
that consist in choosing randomly a communication graph in a predefined
family of graphs. In particular we have considered the circulant graphs and
graphs with bounded in-degree. It turns out that choosing randomly over such
family graphs we obtain higher performances then using time-invariant com-
munication graphs. In [5] the analysis has been extended to random Cayley
graphs and to communication graphs where the information is quantized.

A Proof of Theorem 1

In order to prove theorem 1 we need the following technical lemma.

Lemma 1. Let T = R/Z ∼= [−1/2, 1/2[. Let 0 ≤ δ ≤ 1/2 and consider the
hypercube V = [−δ, δ]k ⊆ T

k. For every Λ ⊆ T
k such that |Λ| ≥ δ−k, there

exist x̄1, x̄2 ∈ Λ with x̄1 6= x̄2 such that x̄1 − x̄2 ∈ V .

Proof. For any x ∈ T and δ > 0, define the following set

L(x, δ) = [x, x+ δ] + Z ⊆ T .

Observe that for all y ∈ T, L(x, δ) + y = L(x+y, δ). Now let x̄ = (x̄1, . . . , x̄k) ∈
T
k and define

L(x̄, δ) =

k∏

i=1

L(x̄i, δ) .
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Also in this case we observe that L(x̄, δ)+ȳ = L(x̄+ȳ, δ) for every ȳ ∈ T
k.

Consider now the family of subsets

{L(x̄, δ), x̄ ∈ Λ} .

We claim that there exist x̄1 and x̄2 in Λ such that x̄1 6= x̄2 and such that
L(x̄1, δ)∩L(x̄2, δ) 6= ∅. Indeed, if not, we would have |Λ|δk < 1 which contra-
dicts our assumptions. Notice finally that

L(x̄1, δ) ∩ L(x̄2, δ) 6= ∅ ⇔ L(0, δ) ∩ L(x̄2 − x̄1, δ) 6= ∅ ⇔ x̄2 − x̄1 ∈ V .

¥

We can now prove theorem 1.

Proof. With no loss of generality we can assume that

G = ZN1
⊕ . . .⊕ ZNr .

Assume we have fixed a probability distribution π concentrated on S. Let
P be the corresponding stochastic Cayley matrix. It follows from previous
considerations that the spectrum of P is given by

σ(P ) =

{
N1−1∑

k1=0

. . .

Nr−1∑

kr=0

π(k1, . . . , kr)e
i 2π
N1

k1`1 · · · ei
2π
Nr

kr`r : `s ∈ ZNs ∀s = 1, . . . , r

}

Denote by k̄j = (kj1, . . . , k
j
r), for j = 1, . . . , ν, the non-zero elements in S, and

consider the subset

Λ =

{(
r∑

i=1

k1
i `i
Ni

, . . . ,

r∑

i=1

kνi `i
Ni

)

+ Z
k | `s ∈ ZNs for 1 ≤ s ≤ r

}

⊆ T
ν .

Let δ = (
∏

iNi)
−1/ν and let V be the corresponding hypercube defined as in

Lemma 1. We claim that there exists ¯̀= (`1, . . . `r) ∈ ZN1
× · · · × ZNr ,

¯̀ 6= 0
such that (

r∑

i=1

k1
i `i
Ni

, . . . ,

r∑

i=1

kνi `i
Ni

)

+ Z
k ∈ V .

Indeed, if there exist two different ¯̀′, ¯̀′′ ∈ ZN1
× · · · × ZNr such that

(
r∑

i=1

k1
i `
′
i

Ni
, . . . ,

r∑

i=1

kνi `
′
i

Ni

)

+ Z
ν =

(
r∑

i=1

k1
i `
′′
i

Ni
, . . . ,

r∑

i=1

kνi `
′′
i

Ni

)

+ Z
ν ,

then we have that,
(

r∑

i=1

k1
i `i
Ni

, . . . ,
r∑

i=1

kνi `i
Ni

)

+ Z
ν = 0 ,
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where ¯̀ = ¯̀′ − ¯̀′′ 6= 0 . On the other hand, if different elements in ZN1
×

· · · × ZNr always lead do distinct elements in Λ, then, |Λ| =
∏

iNi = δ−ν .
We can then apply Lemma 1 and conclude that there exist two different
¯̀′, ¯̀′′ ∈ ZN1

× · · · × ZNr such that
[(

r∑

i=1

k1
i `
′
i

Ni
, . . . ,

r∑

i=1

kνi `
′
i

Ni

)

+ Z
ν

]

−

[(
r∑

i=1

k1
i `
′′
i

Ni
, . . . ,

r∑

i=1

kνi `
′′
i

Ni

)

+ Z
ν

]

∈ V .

Hence,
(

r∑

i=1

k1
i `i
Ni

, . . . ,
r∑

i=1

kνi `i
Ni

)

+ Z
ν ∈ V ,

where ¯̀= ¯̀′ − ¯̀′′ 6= 0 . Consider now the eigenvalue

λ =

N1−1∑

k1=0

N2−1∑

k2=0

. . .

Nr−1∑

kr=0

π(k1, . . . , kr)e
i( 2π
N1

k1`1+
2π
N2

k2`2+···+
2π
Nr

kr`r)

= π(0, . . . 0) +
ν∑

j=1

π(kj1, . . . , k
j
r)e

j( 2π
N1

kj
1
`1+

2π
N2

kj
2
`2+···+

2π
Nr

kjr`r) .

Its norm can be estimated as follows

|λ| ≥ π(0, . . . 0) +

ν∑

j=1

π(kj1, . . . , k
j
r) cos

(
2π

N1
kj1`1 +

2π

N2
kj2`2 + · · ·+

2π

Nr
kjr`r

)

≥ π(0, . . . 0) +

ν∑

j=1

π(kj1, . . . , k
j
r) −

ν∑

j=1

π(kj1, . . . , k
j
r)2π

2 1

N2/ν
≥ 1− 2π2 1

N2/ν

and so we can conclude. ¥

B Proof of Proposition 1.

As previously we observe that E [‖y(t)‖]2 = trE
[
y(t)yT (t)

]
. Let P (t) =

E[y(t)yT (t)]. We have that

P (t+ 1) = E
[
y(t+ 1)yT (t+ 1)

]

= E





(

(1 + k0)I +

ν∑

i=1

Παi(t)

)

y(t)yT (t)

(

(1 + k0)I +

ν∑

i=1

Παi(t)

)T




= E

[

E

[(

(1 + k0)I +
ν∑

i=1

Παi(t)

)

y(t)×

×yT (t)

(

(1 + k0)I +
ν∑

i=1

Παi(t)

)T

| α1(t), . . . , αν(t)








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Since y(t) is independent from α1(t), . . . , αν(t) we obtain

P (t+ 1) = E





(

(1 + k0)I +

ν∑

i=1

Παi(t)

)

P (t)

(

(1 + k0)I +

ν∑

i=1

Παi(t)

)T




= (1 + k0)
2P (t) + (1 + k0)

(
ν∑

i=1

kiE(Π
αi(t))

)
P (t)+

+ (1 + k0)
(

ν∑

i=1

kiE(Π
−αi(t))

)
P (t)+

+

ν∑

i=1

ν∑

j = 1
j 6= i

kikjE
[

Παi(t)
]

P (t)E
[

Π−αj(t)
]

+

+

ν∑

i=1

k2
iE

[

Παi(t)P (t)Π−αi(t)
]

By straightforward calculations one can verify that E
[
Π−α(t)

]
= E

[
Πα(t)

]
=

1
N vv

T and tr
(
P (t)vvT

)
= 0. Hence

E
[
‖y(t+ 1)‖2

]
= (1+k0)

2
E
[
‖y(t)‖2

]
+

ν∑

i=1

k2
i trE

[

Παi(t)P (t)Π−αi(t)
]

(23)

Using the fact that tr (AB) = tr (BA) we can conclude that

E
[
‖y(t+ 1)‖2

]
=

(

(1 + k0)
2 +

ν∑

i=1

k2
i

)

E
[
‖y(t)‖2

]

=

(

(1 + k0)
2 +

ν∑

i=1

k2
i

)t

‖y(0)‖2

Now it is easy to verify that

min






(1 + k0)

2 +
ν∑

i=1

k2
i | 1 + k0, k1, . . . , kν ≥ 0,

ν∑

j=0

kj = 0






=

1

1 + ν
(24)

and that it is obtained by choosing k0 = −ν/(1 + ν) and kj = 1/(ν + 1) for
all 1 ≤ j ≤ ν. With such a choice we have the convergence result (20)

¥

C Proof of Proposition 2.

We observe that E [‖y(t)‖]2 = trE
[
y(t)yT (t)

]
. Let P (t) = E[y(t)yT (t)]. We

have that
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P (t+ 1) = E

[(

(1 + k0)y(t) +

ν∑

i=1

kiY Ei(t)y(t)

)

×

×

(

(1 + k0)y(t) +

ν∑

i=1

kiY Ei(t)y(t)

)T




= (1 + k0)
2P (t) + E

[

(1 + k0)y(t)y
T (t)

ν∑

i=1

kiE
T
i (t)Y

]

+

+ E

[
ν∑

i=1

Y Ei(t)y(t) y
T (t)(1 + k0)

]

+

+ E





ν∑

i=1

kiY Ei(t)y(t)y
T (t)

ν∑

j=1

kjE
T
j (t)Y



 .

Using the double expectation theorem and the fact that Ei(t) and P (t) are
independent for any i = 1, . . . , r, we have that

P (t+ 1) = (1 + k0)
2P (t) + (1 + k0)P (t) E

[
ν∑

i=1

kiE
T
i (t)Y

]

+

+ (1 + k0) E

[
ν∑

i=1

kiY Ei(t)

]

P (t)+

+ Y E





ν∑

i=1

(kiEi(t))P (t)

ν∑

j=1

(kjE
T
j (t))



Y.

Let Ω = vvT /N . Since E[Ei(t)] = Ω and since Y Ω = Ω Y = 0 we have
that the first two expectations in the previous equation are equal to zero. To
compute the last expectation we need to distinguish two cases:

i 6= j : then Ei(t), E
T
j (t) and P (t) are all independent and thus the expecta-

tion factorizes. Two terms of the type Y Ω appear and thus for i 6= j the
expectation is zero,

i = j : then, since it can be verified by straightforward calculations that for
any M ∈ R

N×N ,

E
[
Ei(t)MET

i (t)
]
=

1

N
(vTMv)Ω +

(
1

N
trM −

1

N2
vtMv

)

I,

we have
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Y E
[
kiEi(t)P (t) kiE

T
i (t)

]
Y = k2

i Y E
[
Ei(t)P (t)ET

i (t)
]
Y

=
k2
i

N
Y vTP (t) v ΩY +

k2
i

N
tr (P (t)) Y

−
k2
i

N2
Y vTP (t) vY

The first term of the previous equation is zero since Ω Y is zero.

We thus obtain that

P (t+ 1) = (1 + k0)
2P (t) +

1

N

ν∑

i=1

k2
i tr (P (t))Y −

1

N2

ν∑

i=1

k2
i Y v

T P (t) vY.

Now we consider E
[
‖y(t)‖2

]
= trP (t), then we have

E
[
‖y(t+ 1)‖2

]
= (1 + k0)

2
E
[
‖y(t)‖2

]
+

1

N

ν∑

i=1

k2
i tr

(
tr (P (t))Y

)

−
1

N2

ν∑

i=1

k2
i tr (v

T P (t) vY ).

The term tr
(
tr (P (t))Y

)
= (N − 1) tr (P (t)) since tr (Y ) = N − 1 and the last

term is zero since

vT P (t) v =

N∑

i=1

N∑

j=1

(P (t))ij = 0 .

We thus have the following difference equation

E
[
‖y(t+ 1)‖2

]
=

(

(1 + k0)
2 +

N − 1

N

ν∑

i=1

k2
i

)

E
[
‖y(t)‖2

]
.

Now it is easy to verify that

min
k,k1,...,kν






(1 + k0)

2 +
N − 1

N

ν∑

i=1

k2
i | 1 + k0, k1, . . . , kν ≥ 0,

ν∑

j=1

kj = 1






=

1

1 + ν

(25)
and that it is obtained by choosing k0 = −νN/(N(1 + ν) − 1) and kj =
νN/(N(1+ ν)) for all 1 ≤ j ≤ ν. With such a choice we have the convergence
result (21). ¥

D Proof of Proposition 3.

Let us define z(t) = x(t) − b v. It is not difficult to prove that z(t) has the
same close loop dynamics as the system in x(t), thus
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z(t+ 1) =

(

(1 + k0)I +

ν∑

i=1

kiEi

)

z(t).

Let us consider P (t) = E[(x(t) − bv)(x(t) − bv)T ] = E[z(t)zT (t)]. Similar
calculations as those done for the convergence rat yields

P (t+ 1) = (1 + k0)
2P (t) + (1 + k0)

ν∑

i=1

ki (P (t)Ω +ΩP (t))+

+

ν∑

i=1

k2
i

(
1

N
(vT P (t) v)Ω +

(
1

N
trP (t)−

1

N2
vTP (t) v

)

I

)

+

+

ν∑

i=1

ν∑

j=1

i6=j

kikj ΩP (t)Ω

Let us define the following variables

w(t) =
1

N
trP (t)

s(t) =
1

N2
vTP (t)v

We want to compute the mean squared distance from the barycenter at steady
state, namely we want to compute w(∞) := limt→∞ w(t). We have that

(
w(t+ 1)
s(t+ 1)

)

=





(1 + k0)
2 +

∑ν
i=1 k

2
i −k0(k0 + 2)−

∑ν
i=1 k

2
i

1

N

∑ν
i=1 k

2
i 1−

1

N

∑ν
i=1 k

2
i





︸ ︷︷ ︸

Σ

(
w(t)
s(t)

)

.

where the transition matrix Σ has eigenvalues λ1 = 1, since when the
states agree, they do not move anymore and λ2 = k2

0 + N−1
N

∑ν
i=1 k

2
i related

to the convergence rate, which was computed before. The time evolution of
w(t) and s(t) is thus given by

(
w(t)
s(t)

)

= c1λ
t
1a1 + c2λ

t
2a2

where c1, c2 are constants and a1, a2 are the eigenvectors associated to λ1

and λ2. At steady state the vector (w(∞), s(∞))T is aligned to the dominant
eigenvector of Σ and thus w(∞) ≈ c1. Simple calculations yield

w(∞) = α
1

N
x(0)T (I −Ω)x(0) ,

where

α =

∑ν
i=1 k

2
i

(1−N)
∑ν

1=1 k
2
i − k0N(k0 + 2)

.

¥



Symmetries in the Coordinated Consensus Problem 27

References

1. R.W. Beard, J. Lawton, and F.Y. Hadaegh. A coordination architecture for

spacecraft formation control. IEEE Transaction on Control Systems Technology,

9:777–790, 2001.

2. E. Behrends. Introduction to Markov Chains (with Special Emphasis on Rapid

Mixing). Vieweg Verlag, 1999.

3. P. Bhatta and N. E. Leonard. Stabilization and coordination of underwater

gliders. In IEEE Conference on Decision and Control, 2002.

4. P. Bolzen, P. Colaneri, and G. De Nicolao. On almost sure stability of discrete-

time markov jump linear systems. In IEEE Conference on Decision and Control,

2004.

5. R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communication con-

straints in the state agreement problem. Submitted for publication.

6. J. Cortés, S. Mart́ınez, and F. Bullo. Robust rendezvous for mobile autonomous

agents via proximity graphs in arbitrary dimensions. IEEE Transaction on

Automatic Control, 2004. To appear.

7. R. D’Andrea and G. E. Dullerud. Distributed control design for spatially inter-

connected systems. IEEE Transactions on Automatic Control, 48(9):1478–1495,

2003.

8. P. J. Davis. Circulant matrices. A Wiley-Interscience Publication, Pure and

Applied Mathematics. JohnWiley & Sons, New York-Chichester-Brisbane, 1979.

9. Y. Fang and K. A. Loparo. Stochastic stability of jump linear systems. IEEE

Transaction on Automatic Control, 47(7):1204–1208, 2002.

10. J. A. Fax and R. M Murray. Information flow and cooperative control of vehicle

formations. IEEE Transaction on Automatic Control, 49(9):1465–1476, 2004.

11. G. Ferrari-Trecate, A. Buffa, and M. Gati. Analysis of coordination in multiple

agents formations through partial difference equations. Technical Report 5-

PV, Istituto di Matematica Applicata e Tecnologie Informatiche, C.N.R., Pavia,

Italy, 2005. Submitted for publication.

12. F. R. Gantmacher. The theory of matrices. New York : Chelsea publ., 1959.

13. C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

14. Y. Hatano and M. Mesbahi. Agreement of random networks. In IEEE Confer-

ence on Decision and Control, 2004.

15. T. W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.

Springer-Verlag, 1974.

16. A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988–1001, 2003.

17. J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous prob-

lem: an extended summary. In A. S. Morse V. Kumar, N. E. Leonard, editor,

Proceedings of the 2003 Block Island Workshop on Cooperative Control, volume

309 of Lecture Notes in Control and Information Sciences, pages 257–282. New

York: Springer Verlag, 2004.

18. Z. Lin, B. Francis, and M. Maggiore. On the state agreement problem for multi-

ple nonlinear dynamical systems. In Proceedings of 16th IFAC World Congress,

2005.



28 Authors Suppressed Due to Excessive Length

19. M. Marodi, F. d’Ovidio, and T. Vicsek. Synchronization of oscillators with long

range interaction: Phase transition and anomalous finite size effects. Phisical

Review E, 66, 2002.

20. M. Mazo, A. Speranzon, K. H. Johansson, and X. Hu. Multi-robot tracking of

a moving object using directional sensors. In Proceedings of the International

Conference on Robotics and Automation (ICRA), 2004.

21. R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents

with switching topology and time-delays. IEEE Transactions on Automatic

Control, 49(9):1520–1533, 2004.

22. L. Saloff-Coste. Random walks on finite groups. In Harry Kesten, editor, En-

cyclopaedia of Mathematical Sciences, pages 263–346. Springer, 2004.

23. S. L. Smith, M. E. Broucke, and B. A. Francis. A hierarchical cyclic pursuit

scheme for vehicle networks. Automatica, 41(6):1045–1053, 2005.

24. S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchro-

nization in populations of coupled oscillators. Physica D: Nonlinear Phenomena,

143(1-4):1–20, 2000.

25. H. G. Tanner, A. Jadbabaie, and G .J. Pappas. Stable flocking of mobile agents,

part I: Fixed topology. In IEEE Conference on Decision and Control, 2003.

26. H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile agents,

part II: Dynamic topology. In IEEE Conference on Decision and Control, 2003.


