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Abstract— We revisit the problem of stealth attack – a
coordinated attack through several possible entry points –
on a closed loop linear time invariant dynamical system.
We propose a notion of the impact of such an attack on the
system and consider a novel metric related to the H-infinity
norm of the inverse of the system dynamics (assuming it
exists) as a measure of the security of the system. We show
that the problem can be cast as a linear matrix inequality
optimization with the system parameters (observer gain)
as the variable. This formulation allows a user to re-design
the system from the perspective of minimizing the impact
of any stealth attack. Numerical results on simulated data
illustrate the security and performance tradeoff using the
proposed approach.

Index Terms— Stealth attacks, resilient control, H-
infinity design

I. INTRODUCTION

Cyber-physical systems (CPSs) have become ubiq-
uitous in modern times. A CPS is composed of a set
of devices directly interacting with the physical layer
of the system, such as sensors, actuators, controllers,
monitors, etc., and can exchange data by cyber means,
such as the intra or internet. CPSs are used in both
safety critical systems, such as power networks, water
purification systems, airplanes, and in less critical in-
frastructures, such as heating and lighting systems. As
CPSs are inherently interconnected, mostly using IP-
based protocols, attacks on such system are growing and
they can be rather elaborate such as STUXNET [5] or
the latest attack on Ukraine’s power grid [1]. Since an
attack on a CPS can have major physical consequences,
it is highly desirable to develop design tools to assess
the impact of security measures on the performance of
such systems: clearly there are tradeoffs between control
performance and security.

In the CPSs security research literature, authors have
been considering various models of attacks. In [2]
and [6], the authors have considered false data injections
on static estimators. This attack is modeled as corruption
of measurements that are used for state estimation.
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Conditions on the systems properties that prevent these
attacks are derived in [8], where the authors show that
an attack exists if and only if the system dynamics
have an unstable mode and the associated eigenvector
satisfies a technical assumption. More recent work, [12]
and [3], provide methods to change the system model
so that a class of stealthy attacks on the actuators or
sensors can be detects. In [10] the authors provide a
more general framework to analyze several types of
attacks on power systems and networks. In particular,
general conditions for attack detection and identifiability
for descriptor linear time-invariant systems are defined.

The problem of trading off security and control per-
formance has been researched in recent years. One of
the first papers to explore such a tradeoff is [7], where
an additive Gaussian noise with zero mean and known
covariance is added to the control input. The addition
of such noise deteriorates the control performance –
measured with respect to an LQG cost – but enables
the detectability of the attack. More recently, in [9],
the authors have extended the results considering such
noise signature (watermarking) to be the output of a
hidden Markov model. In a recent paper [11] the authors
propose a framework to design secure and computa-
tionally efficient cyber-physical systems. In particular,
they explore a tradeoff between the sampling period in
a control system and the probability of an attacker to
be able to decode an encrypted sensor message as a
function of the number of bits in the encryption key and
the importance such sensor has in the observability of
the system. In [14], the authors leverage such framework
to develop a control/security design method – they also
consider schedulability of processes in a CPU as part
of the cost – and formulate an optimization problem
from where, for various security levels, one can obtain
the control performance vs security Pareto curve. In a
similar spirit [13] considers such tradeoffs, where the
control performance is related to the tracking error and
the security level is associated to the number of bits used
to encrypt the sensor and actuator signals.

In this paper, we revisit the problem of stealth attack
– a coordinated attack through several possible entry
points – on a closed loop linear time invariant dynamical
system. The main difference with respect to our previous
work [3] is that we now consider the case of noise in
the system, and thereby focus on minimizing the conse-
quences of a stealth attack on the system. We propose a



notion of the impact of such an attack on the system
and consider a novel metric related to the H-infinity
norm of the inverse of the system dynamics (assuming
it exists) as a measure of the security of the system. We
show that the problem can be cast as a linear matrix
inequality optimization problem, under certain assump-
tions, with the system parameters (observer gains) as
decision variables. This formulation allows a user to re-
design the control loop so that the impact of any stealth
attack is minimized. Numerical results on simulated
data illustrate the security (maximum impact of stealth
attack) and performance (`2 gain of the original system)
tradeoff using the proposed approach.

This paper is organized as follows. Section II de-
scribes how the system and the attack are modeled.
Section III provides an analysis and introduces the H-
infinity norm based metric for measuring the impact
of stealth attacks. Section IV describes our proposed
approach on how to re-design the system parameters
trading off security and closed-loop performance. Sec-
tion V summarizes the results on synthetic data. Finally,
Section VI summarizes our conclusions and directions
for future research.

II. PROBLEM FORMULATION

A. System Modeling

We consider the discrete-time version of a linear time
invariant dynamical system given by

xk+1 = Axk +Buk +Bnnk , (1)
yk = Cxk +Duk +Dnnk , (2)

where at every discrete time instant k ∈ Z≥0. The state
is xk ∈ Rn and the measurement vector yk ∈ Rm. The
noise vector nk ∈ Rq is assumed to be bounded. The
control input is uk ∈ Rp and the systems matrices are
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p, Bn ∈
Rn×q , Dn ∈ Rm×q . We will assume that the system is
stabilizable and that it operates in closed-loop, i.e., the
control uk is given by a state feedback law,

uk = Kx̂k,

where the matrix K ∈ Rp×n is designed in a manner
that the matrix A + BK is stable and where x̂k is the
estimate of the state xk. We thus assume that there is an
observer that estimates the state from the measurements.
The observer dynamics are given by

x̂k+1 = Ax̂k +Buk − L(yk − Cx̂k −Duk) , (3)

where the matrix L ∈ Rn×m is designed so that the
matrix A + LC is stable and with eigenvalues smaller
(in absolute value) of those of A+BK.

Fig. 1. A general closed loop controlled system with a plant a
controller and observer. Attacks to the actuators and sensors are shown
in red and orange, respectively, whereas an attack to the controller and
observer signals is shown in purple.

B. Attack Modeling

Attacks may occur in the form of additive signals at
different points of the closed loop system. Various cyber
security mechanisms are assumed to be present in a CPS
to prevent an attacker to tamper with the system. Such
mechanisms can reduce the number of attack points and
for each attack point reduce the degree of freedom of an
attack, namely the components and/or signals that can
be attacked.

For example, using authentication methods with dif-
ferent levels of security, certain sensors could be more
difficult to attack. Thus given a CPS, it is possible
to rank the attacks points from “likely” to “unlikely”
and for a given attack point determine what could
be the attack “progression”, i.e., rank the number of
devices/signals that could be corrupted as a function
of time. Examples of attack points for a closed-loop
control system are shown in Figure 1 and we refer
the reader to [3] for a discussion on deployment of
security countermeasures a function of the ranking of
attack points. In this work, we will assume that the
software modules that implement the control law and the
observer are secure, i.e., it is very unlikely for an attacker
to modify system parameters and/or control/estimation
algorithms and therefore, G = H = 0 in Figure 1.

The closed loop system in Figure 1 is described by:[
xk+1

x̂k+1

]
=

[
A BK
−LC A+BK + LC

] [
xk
x̂k

]
+

[
BE
−LDE

]
vk +

[
0
−LF

]
wk +

[
Bn
LDn

]
nk,

(4)



and

yak =
[
C DK

] [xk
x̂k

]
+DEvk + Fwk +Dnnk ,

(5)

where the attack signals are v ∈ Re, w ∈ Rf . The
matrices E, F , are of compatible dimensions and their
column dimensions represent the degree of freedom of
the attacker. For example, if the matrix E ∈ Rp×e
with p ≥ e, then the attacker has e degrees of freedom
to affect the p control signals.

The matrices E and F serve as a lumped model
of the cyber layer and capture the capability of an
attacker to affect the actual physical signals u, y and x̂.
These matrices could be the identity of appropriate
dimensions, which would model the capability of an
attacker to directly corrupt each individual component
of u, y and x̂. Without loss of generality, we assume that
both of these matrices are full column rank. Otherwise,
they only provide redundant degrees of freedom to the
attacker.

System (4) can be transformed into

x̂k+1 − xk+1 = (A+ LC)(x̂k − xk)− (LDE +BE)vk

− LFwk + (LDn −Bn)nk, (6)

by subtracting the first component of (4) from the
second.

From the point of view of monitoring attacks in the
system, we can define the following output

ymk := ŷk − yak
= Cx̂k +DKx̂k − Cxk −DKx̂k −DEvk
− Fwk −Dnnk

= C(x̂k − xk)−DEvk − Fwk −Dnnk. (7)

C. Problem Statement

We first formalize the notion of stealth attacks consid-
ered in this paper. For the system (6)-(7) the output is a
function of the error x̂k − xk, the attack vectors vk, wk
and the noise vectors nk; namely we have that ymk (x̂k−
xk, vk, wk, nk). For short, define ak = (v′k, w

′
k)′.

In this paper, we consider noise vectors n : Z≥0 → R,
as signals with a maximum finite `2 norm, i.e.,

Nε := {n :

+∞∑
k=0

‖nk‖2 ≤ ε,∀k ∈ {1, . . . ,+∞}} ,

where ε ≥ 0, is a given parameter.
We can then define an attack as stealth in the fol-

lowing manner, similar in spirit to what was proposed
in [10].

Definition II.1 (Stealth Attack). Given a linear-time
invariant system (6)–(7) and ε, δ ≥ 0, an attack

a0,a1, . . . ,aT , is defined to be stealth if there exists an
admissible noise signal n ∈ Nε, such that

∞∑
k=1

‖ymk (x̂k − xk,ak, nk)‖2 ≤ δ .

If such a stealth attack exists, then its impact is defined
as the `2 norm of a, i.e.,

I :=

∞∑
k=1

‖ak‖2 .

In other words, this means that there exists an action
of the attacker on the internal signals of the system
that is perceived as the effect of an admissible noise
signal within the system. Specifically, we will address
the problem of designing a technique to modify the
system parameters (specifically the observer gain L) so
that the modified system admits only a minimal impact
of any stealth attack.

III. ANALYSIS

This section provides an analysis of the system dy-
namics and related conditions, which will allow us to
characterize the impact of a stealth attack. We begin the
analysis by defining the following matrices:

A := A+ LC ,

B :=
[
−(B + LD)E −LF

]
= −

[
BE 0

]
− L

[
DE F

]
,

C := C , D := −
[
DE F

]
,

Bn := LDn −Bn , Dn := −Dn .

then the system (6)–(7) can be rewritten as

xk+1 = Axk + Bak + Bnnk ,

ymk = Cxk + Dak + Dnnk , (8)

with xk := x̂k − xk being the error vector and ak =
(v′k, w

′
k)′ the attack vector.

In what follows, we will first consider the special case
of zero noise, which arises when ε = δ = 0, and then
present the general case with noise.

A. Special case of no noise

Let V :=
[
D′ B′C′ B′A′C′ . . . B′A′m−1C′

]′
,

where m is the dimension of A. Then, the following re-
sult summarizes conditions for the extreme case, namely
under the zero noise assumption.

Theorem III.1 (Zero Noise). If ε = δ = 0, then a
stealth attack on the system (6)–(7) has impact

I =

{
0, if D has full column rank,
+∞, if the null space of V is non-empty.

Proof. We assume without loss of generality that x0 =
0. Since ε = δ = 0, from the definition of stealth attack,



we have that yak = 0 for any k ≥ 0. This holds true if
and only if for any finite T ≥ 0,

Da0 = 0 ,

CBa0 + Da1 = 0 ,

...

CAT−1Ba0 + · · ·+ CBaT−1 + DaT = 0 .

For the first part, if D has full column rank, then a0 = 0.
This implies that a1 = 0 from the second equation, and
so on. Thus, ak = 0, for any k ≥ 0, which implies that
the impact is zero.

For the second part, let z denote a vector in the null
space of V. Consider the following attack: ak = z,∀k ≥
0. Clearly this attack is stealth until time t = m. For
t ≥ m+ 1, we can invoke Cayley-Hamilton Theorem to
write

At =

m−1∑
i=0

αiA
i,

⇒ CAtBz = C(

m−1∑
i=0

αiA
i)Bz =

m−1∑
i=0

αiCAiBz = 0.

Therefore, the attack remains stealth for every k ≥ 0.
Since the vector z can have arbitrarily large magnitude,
the impact of the attack is infinite.

Remark III.1 (Connection with existing results). Theo-
rem III.1 has been known in literature in several forms,
cf. [12] and other references, related to output nulling
attacks using geometric control theory. For complete-
ness, we included a version of this result rephrased in
the context of the impact of stealth attacks. Given that
zero noise is an extreme case, it was natural to expect
that the impact can be extreme as well, namely either
zero or infinite, depending on whether an attacker can
choose signals in a certain subspace or not.

B. Noise Case: Redesign of Gain matrices

In this section, we analyze how the attacker can
leverage the presence of noise, which may be present
in the system dynamics and/or in the measurement
processes, to carry out a stealth attack.

As a consequence of the condition in Theorem III.1,
we assume here that D has full column rank. This
implies that1 D†D = I , so we can invert the system (8)
and interpret the attack vector a as the output of the
following inverse system:

x+ = (A−BD†C)x + BD†ym

+ (Bn −BD†Dn)n , (9)

a = −D†Cx + D†ym −D†Dnn .

1We denote with D† the Moore-Penrose pseudoinverse of the
matrix D.

Define,

A := A−BD†C , B :=
[
BD† (Bn −BD†Dn)

]
,

C := −D†C , D :=
[
D† −D†Dn

]
,

with the noise vector n := [y′ n′]′.
Then, the following result yields an upper bound on

the impact of stealth attack on (9).

Theorem III.2 (Bound on maximal impact). Suppose
that the matrix A is Hurwitz and that the noise vector
in the system (6)–(7) belongs to the admissible set Nε.
Then, the system (6)–(7) admits a stealth attack having
impact at most

γ(ε+ δ),

where γ is the H∞ norm of the system (9). If A is not
Hurwitz, then the impact of the stealth attack is infinite.

Proof. Let us assume again, without loss of generality,
that x0 = 0. From the definition of the stealth attack
and from the admissible noise set, the noise vector n
has finite `2 norm given by ε+δ. The claim now follows
from the definition of the H∞ norm for system (9).

To minimize the impact of the admissible stealth
attack in the system, we seek to minimize the H∞ norm
of the system (9) that, in general, is a function of the
observer gain matrix L. If, for some value of L, the
H∞ norm of (9) is finite, then A(L) is guaranteed to be
Hurwitz. However, it does not guarantee that the matrix
A(L) is Hurwitz. This criterion needs to be specified
separately as a constraint and is the topic of the next
section.

IV. RE-DESIGN TO OPTIMIZE FOR SECURITY

The goal is to design the estimator gain L such that
the H∞ norm of system (9) is minimized. We will need
to add the constraint that the closed-loop stability of
the original system (8) is preserved. In other words, the
maximum eigenvalue of A + LC can only take values
that are strictly less than one.

To minimize the H∞ norm of the dynamical sys-
tem (9) (equivalently, the `2 gain of the system), we
need to solve the following optimization [4],

min
γ,P̄ ,L

γ

s.t. P̄ � 0,[
A B
C D

]′ [
P̄ 0
0 I

] [
A B
C D

]
≺
[
P̄ 0
0 γ2I

]
, (10)

From the definitions,

A = A−BD†C

= A−BD†C + LC

= A+
[
BE 0

]
D†C + L

[
DE F

]
D†C + LC

= Ā+ LC̄ ,



where

Ā := A+
[
BE 0

]
D†C , C̄ := −DD†C + C .

Similarly, we can write B as

B =
[
BD† (Bn −BD†Dn)

]
=
[
0 I

]
Bn + B

[
D† D†Dn

]
=
[
0 I

]
(LDn −Bn) +

[
BE 0

] [
D† D†Dn

]
+ L

[
DE F

] [
D† D†Dn

]
= B̄ + LĒ,

where we defined

B̄ := −
[
0 I

]
Bn −

[
BE 0

] [
D† D†Dn

]
Ē :=

[
0 I

]
Dn −D

[
D† D†Dn

]
.

Now, the maximum eigenvalue constraint on A+LC
is satisfied if and only if there exists a P̃ � 0 for which

(A+ LC)′P̃ (A+ LC)− P̃ ≺ 0 .

This constraint can be combined with the constraint (10),
to obtain:Ā+ LC̄ 0 B̄ + LĒ

0 A+ LC 0
−D†C 0 D

′ ·
P̄ 0 0

0 P̃ 0
0 0 I


·

Ā+ LC 0 B̄ + LĒ
0 A+ LC 0

−D†C 0 D

 ≺
P̄ 0 0

0 P̃ 0
0 0 γI

 .
Employing a standard trick from [4], define Q̄ :=
P̄−1, Y := Q̄L, Q̃ := P̃−1, X := Q̃L, we obtainQ̄Ā+ Y C̄ 0 Q̄B̄ + Y Ē

0 Q̃A+XC 0
−D†C 0 D

′ Q̄−1 0 0

0 Q̃−1 0
0 0 I


Q̄Ā+ Y C̄ 0 Q̄B̄ + Y Ē

0 Q̃A+XC 0
−D†C 0 D

 ≺
Q̄ 0 0

0 Q̃ 0
0 0 γ2I

 .
By taking the Schur complement, this can be written as[

Q11 QT12

Q12 Q22

]
� 0, (11)

where the matrices

Q11 :=

Q̄ 0 0

0 Q̃ 0
0 0 γ2I

 ,Q22 :=

Q̄ 0 0

0 Q̃ 0
0 0 I

 ,
Q12 :=

Q̄Ā+ Y C̄ 0 Q̄B̄ + Y Ē

0 Q̃A+XC 0
−D†C 0 D

 .
This problem is not convex since we need to ensure
that Q̄−1Y = Q̃−1X = L, which leads to a non-
linear equality constraint. To convexify the problem

and therefore make it tractable, we introduce additional
constraints

Q̄ = Q̃ , Y = X ,

yielding an LMI in the variables Q̃, Q̄,X, Y . Such
convexication provides a sufficient condition for the sat-
isfaction of (10) and the maximum eigenvalue constraint,
leading to the following convex problem:

min
γ,Q̄,Q̃,X,Y

γ (12)

s.t.
[
Q11 QT12

Q12 Q22

]
� 0,

X = Y , Q̄ = Q̃,

Q̃ � 0 , Q̄ � 0 .

The optimal solution to problem (12) (if it exists) is an
upper bound on the optimal solution to the original prob-
lem (i.e., problem (12) without the additional constraints
of Q̄ = Q̃ and X = Y ). Therefore, infeasibility of (12)
only implies that one is required to solve the original
problem for that particular system.

A. Re-design under Performance Constraints

We now address the case when there is a performance
constraint is expressed as a desired bound, η2, on the `2
gain between the noise n and ym for the system (8).
We can proceed as before with the maximum eigenvalue
constraint replaced by[

A+ LC LDn −Bn
C Dn

]′ [
P̃ 0
0 I

]
·

·
[
A+ LC LDn −Bn

C Dn

]
≺
[
P̃ 0
0 ηI

]
,

P̄ � 0 ,

which leads to a Semi-Definite Program similar to (12),
with the difference that

Q11 :=


Q̄ 0 0 0

0 Q̃ 0 0
0 0 γ2I 0
0 0 0 ηI

 ,Q22 :=


Q̄ 0 0 0

0 Q̃ 0 0
0 0 I 0
0 0 0 I

 ,

Q12 :=


Q̄Ā+ Y C̄ 0 Q̄B̄ + Y Ē 0

0 Q̃A+XC 0 XDn − Q̃Bn
−D†C 0 D 0

0 C 0 Dn

 .
This is now a multi-objective problem for which

we determine the (γ, η) Pareto curve by computing
optimal values γ∗(η) for different fixed values of η. We
demonstrate this evaluation through a numerical example
in the next section.



Fig. 2. Security versus Performance plot. Numerical results of the
optimal value of problem (12) for different values of the parameter η
evaluated on the system described in Section V.

V. NUMERICAL SIMULATIONS

We now report the results of the proposed formulation
from Section IV-A on synthetic problem. In particular,
we chose the following values for the system matrices.

A =

[
1.1 0.2
0 0.9

]
, B =

[
0.8147 0.1270
0.9058 0.9134

]
,

C =

[
0.6324 0.2785
0.0975 0.5469

]
, D =

[
3.5784 −1.3499
2.7694 3.0349

]
,

Bn =

[
0.9572 0.8003
0.4854 0.1419

]
, Dn =

[
−0.1241 1.4090
1.4897 1.4172

]
.

and the following choice for the attack matrices

E =

[
1
0

]
, F =

[
0
1

]
.

Figure 2 summarizes how the optimal value γ∗ of (12)
varies with different choices for the parameter η.

We observe that below the value of η < 9, prob-
lem (12) is infeasible, and as η increases, the optimal
value decreases as is expected. The decrease is very
sharp for lower values of η, but the curve flattens out
as η increases suggesting diminishing improvements for
higher values of η. A curve such as this one may be used
by a designer to study the tradeoff between security and
performance of a given system.

VI. CONCLUSION AND FUTURE DIRECTIONS

We considered the problem of stealth attack, i.e., a
coordinated attack through several possible entry points
on a closed loop linear time invariant dynamical system.
This work extends previous results [3] to the case of
noise in the system, and focuses on minimizing the
consequences of a stealth attack on the system. We
proposed a notion of the impact of such an attack on the

system and considered a novel metric related to the H∞
norm of the inverse of the system dynamics (assuming
it exists) as a measure of the security of the system. We
showed that the problem can be cast as a linear matrix
inequality with the system parameters (observer gain) as
the variable. This formulation allows a user to re-design
of the system from the perspective of minimizing the
impact of any stealth attack. Numerical results on sim-
ulated data illustrate the security (maximum impact of
stealth attack) and performance (`2 gain of the original
system) tradeoff using the proposed approach.

Future directions include the development of methods
to minimize the gap between the convexified and the
original optimization problem and optimal co-design
of both the control and estimation gains for multiple
objectives.
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