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A Feedback Control Scheme for Reversing a Truck and
Trailer Vehicle

Claudio Altafini, Alberto Speranzon, and Bo Wahlberg

Abstract—A control scheme is proposed for stabilization of backward
driving along simple paths for a miniaturized vehicle composed of a truck
and a two-axle trailer. The paths chosen are straight lines and arcs of circles.
When reversing, the truck and trailer under examination can be modeled
as an unstable nonlinear system with state and input saturations. The sim-
plified goal of stabilizing along a trajectory (instead of a point) allows us
to consider a system with controllable linearization. Still, the combination
of instability and saturations makes the task impossible with a single con-
troller. In fact, the system cannot be driven backward from all initial states
because of the jack-knife effects between the parts of the multibody vehicle;
it is sometimes necessary to drive forward to enter into a specific region of
attraction. This leads to the use of hybrid controllers. The scheme has been
implemented and successfully used to reverse the radio-controlled vehicle.

Index Terms—Backward driving, hybrid automata, jack knife, multi-
body wheeled vehicle, state and input saturation.

I. INTRODUCTION

This paper describes a feedback control scheme used to stabilize
the backward motion of the radio-controlled truck and trailer shown
in Fig. 1. The miniaturized vehicle is a 1:16 scale of a real commer-
cial vehicle and reproduces in detail the geometry of the full-scale one;
it has four axles, actuated front steering, and an actuated second axle
to govern the longitudinal motion. Like the real one, it presents sat-
urations on the steering angle and on the two relative angles between
the bodies. It is equipped with potentiometers and differential encoders
so that full state feedback is possible. Our control task is to drive the
system backward along a preassigned straight line, avoiding jack-knife
effects on the angles.

There is a moderate amount of literature on backward steering
control of wheeled multiple vehicles reporting on experimental results
achieved with different control techniques and with different kinds
of vehicles, mainly specially built laboratory mobile robots (see, for
example, [15], [18], [20], [23], and [30]). Numerous papers treat
the backing problem with tools spanning from neural network [25],
fuzzy control [11], [16], [30], learning, genetic algorithms, and expert
systems [6], [12], [17], [26]. Only a few works make use of more
theoretical tools stemming from the literature on control of kinematic
vehicles (overviewed, for example, in [5], [19]), see [7], [18], and [29].
According to such formalism, our system is a general three-trailer,
general because of the kingpin hitching between the second axle
and the dolly. The off-axle connection is important here because it
indicates that the system is not differentially flat [9] nor feedback
linearizable and so simple motion planning techniques, like those
based on algebraic tools [24], cannot be applied. See also [29] for
reverse control of a truck with trailer via feedback linearization in the
simpler case of no off-axle hitching.

From a system theory point of view, the control problem is quite
challenging: it is an unstable nonlinear system with state and input
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Fig. 1. The radio-controlled truck and trailer.

constraints. The “reduced” control goal of stabilization along a line
(instead of a point) allows us to consider a system with controllable
linearization, so that local asymptotic stability can be achieved via Ja-
cobian linearization. Still, the combination of instability and saturations
results in so-called jack-knife effects on the two relative angles between
the truck and the dolly and between the dolly and the semitrailer. This
makes the task of backward driving impossible to solve with a single
controller. The scheme we use here is based on the observation that the
system of equations is homogeneous in one of the inputs (the longi-
tudinal velocityv). Homogeneity here means that the sign ofv alone
discriminates between forward and backward motion. The former, un-
like reversing, is open-loop stable, which implies that we can use it in
order to get close enough to the equilibrium before switching to back-
ward motion. The scheme is formalized in a switching controller with
a logic variable that allows switching between the two different modes
(forward and backward), each of them governed by a linear state feed-
back designed via linear quadratic techniques on the Jacobian lineariza-
tions. Switching in the logic variable occurs when the integral curve of
the closed-loop system hits suitably defined switching surfaces. There
is a certain freedom in the design of the two switching surfaces; the
important condition is that they do not touch each other. The criterion
we follow here is that the reversing mode can be activated only when
the system is entered inside the region of attraction of the local stabi-
lizing controller. Since the nonlinear system is subject to saturations,
very little can be said analytically about the region of convergence of a
controller. However, an ellipsoid playing the role of invariant set for the
closed-loop saturated system can be identified by numerical methods.
The second switching surface is meant to “inform” the controller that
backward motion is going unstable and that a reallignement of the rel-
ative angles is needed (accomplished by moving forward). In the nom-
inal system, this second switching surface is never in use; however, it is
sometimes useful in practice in order to reject disturbances and sensor
errors. Furthermore, since the equilibrium occurs along a trajectory in-
stead of at a rest point, the (possibly destabilizing) perturbations af-
fecting the system have to be considered as nonvanishing. In synthesis,
the switching can be seen as an extra feedback loop around the two
different closed-loop modes. The switching surfaces and the switching
logic are designed in such a way that the desired equilibrium inside
the backward motion regime is given the character of global attractor
from all the initial conditions in a prespecified domain. This switching
scheme is described in Section IV. Once the local controllers for the
different regimes of motion are available (linear feedback design in
presence of saturation for forward/backward motion along lines/arcs is
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Fig. 2. The kinematic model of the truck and trailer.

treated in Section III), there is a certain freedom in designing the logic
loop. The choice above corresponds to the most elementary case of hy-
brid automaton (two states, two transition rules) for the logic loop. As
an example, in Section V, we describe another simple enough scheme
based on a combination of three different finite states. Both logic de-
signs were implemented and successfully used to reverse the real ve-
hicle. A few experimental tests are described in Section VI.

II. K INEMATIC EQUATIONS AND LINEARIZATION

A. Kinematic Model

Call (x3; y3) the Cartesian coordinates of the midpoint of the rear-
most axle,�3 its absolute orientation angle,�3 and�2 the relative ori-
entation angles, respectively, between the rearmost trailer body and the
dolly and between the dolly and the truck body.L3, L2, M1, andL1
are the lengths of the different parts of the body as indicated in Fig. 2.
The inputs are the steering angle� and the longitudinal velocity at the
second axlev. The differential equations describing the kinematics are

_x3 =v cos�3 cos�2 1 +
M1

L1
tan�2 tan� cos �3 (1)

_y3 =v cos�3 cos�2 1 +
M1

L1
tan�2 tan� sin �3 (2)

_�3 =v
sin�3 cos �2

L3
1 +

M1

L1
tan�2 tan� (3)

_�3 =v cos�2
1

L2
tan�2 �

M1

L1
tan�

�

sin �3
L3

1 +
M1

L1
tan�2 tan� (4)

_�2 =v
tan�

L1
�

sin�2
L2

+
M1

L1L2
cos�2 tan� : (5)

Call p = [y3 �3 �3 �2]
T the configuration state obtained by ne-

glecting the longitudinal componentx3. In a compact way, the state
equations are written as

_p = v (A(p) + B(p; �)) : (6)

The sign ofv decides the direction of motion,v < 0 corresponding to
backward motion. The entire state is measured via two potentiometers
on the relative angles�2 and�3 and a pair of optical encoders on the
two wheels of the rearmost axle.

1) State and Input Saturations:Both the relative angles�2 and�3
present hard constraints

j�2j � �2 = 0:6 rad; j�3j � �3 = 1:3 rad: (7)

These limitations are due to the front and rear body touching each
other and to the dolly touching the wheels. They are particularly im-
portant since for back-up maneuvers the equilibrium point is unstable

and jack-knife effects appear on both angles. The other two states do
not present saturations, however, for practical reasons of limited space
when maneuvering, it is convenient to assume the following:

jy3j � y3 = 75 cm j�3j � �3 =
�

2
rad:

Summarizing, the domain of definition ofp is

D = (�y3 ; y3 )� (��3 ; �3 )� (��3 ; �3 )� (��2 ; �2 ) :
(8)

Also, the input has a saturation

j�j � �s = 0:43 rad: (9)

The steering driver tolerates very quick variations, so we do not assume
any slew rate limitation in the steering signal.

B. Jacobian Linearization Along Trajectories

The system (6) is homogeneous in the longitudinal inputv. Fixing
v as a given nonnull function means having a drift component, which
gives a nonvanishing term to the differential equations of the system.
The steering angle� can be used to give asymptotic stability to the
system along a trajectory. The trajectories which admit a constant equi-
librium point in this way are those corresponding to straight lines or
arcs of circles. The first type of equilibrium involves four of the five
states of (1)–(5), for example, the vectorp, while for the circular trajec-
tories only the relative posture�p = [�3; �2]

T has a constant equilib-
rium point in the system (6) (or a different basis, like that corresponding
to a Frenet frame must be chosen, see [5] and [27] for details).

1) Straight Line Linearization:The equilibrium point ofp is the
origin pe = 0 and it corresponds to a nominal value of the steering
input�e = 0. The linearized system is

_p = v (Ap +B�) (10)

where

A =

0 1 0 0

0 0 1

L
0

0 0 � 1

L

1

L

0 0 0 � 1

L

B =

0

0

� M

L L

L +M

L L

: (11)

2) Linearization Along a Circular Trajectory:Consider the sub-
system of (6) relative to�p

_�p = v �A(�p) + �B(�p; �) : (12)

Proposition 1: The equilibrium point of (12) corresponding to a
given steering angle�e is

�2 =arctan
M1

r1
+ arctan

L2
r2

(13)

�3 =arctan
r3
L3

(14)

wherer1 = L1=tan�e, r2 = r21 +M2
1 � L22, andr3 = r22 � L23

are the radii of the circular trajectories followed by the midpointsP1,
P2, andP3 of the axles (see Fig. 3).

Proof: At the steady state, with nominal steering angle�e, all
the axles follow concentric circular trajectories. Look at Fig. 3. All
the calculations are straightforward from trigonometry, starting from
a fixed�e.

The linearization of (12) around�pe = [�3 �2 ]T and�e is now
given by

_�p = v �A(�p� �pe) + �B(�� �e) (15)
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Fig. 3. Equilibrium point along an arc of circle.

where

�A =

cos�2 cos�3
L3

cos�2
L2

+ �f(�pe)

0 �

cos �2
L2

1 +
M1

L1
tan�2 tan�e

�f(�pe) =
sin�2 sin�3

L3
+
M1

L1

sin�2
L2

�

cos�2 sin�3
L3

tan�e

and

�B =

�

M1

L1

cos �2
L2

+
sin�2 sin�3

L3
1 + tan2 �e

1

L1
1 +

M1

L2
cos�2 1 + tan2 �e

:

III. L OCAL CONTROLLERS FORBACKWARD AND FORWARD MOTION

In this section, we describe the local controllers to be used in the
different regimes of motion: drive forward or backward and linearize
along a straight line or an arc of circle.

A. Reversing Along a Line for the Jacobian Linearization

Assumev is a given negative constant.
1) The Linear Quadratic Controller:Consider the straight line

backing case. The linearization (10) is open-loop unstable: the
characteristic polynomial of the uncontrolled system is

det (sI � vA) = s
2

s+
v

L2
s+

v

L3
: (16)

Since (10) is controllable, the origin of the nonlinear system (6) can
be made an asymptotically stable equilibrium by linear state feedback.
We treat it as a linear quadratic optimization problem and in the weight
assignment we use the rule of thumb of trying to have decreasing
closed-loop bandwidths when moving from the inner loop to the outer
one in a nested loopshaping design. In fact, the relative displacement
y3 comes after a cascade of two integrators from the relative angles as
can be seen on the linearization (11). It turns out that such a heuristic
reasoning is very important in the practical implementation in order
to deal with the saturations.

CallingKB = BPB the gain proposed by the solution of the LQ
problem, wherePB is the solution of the Lyapunov equation, the
closed-loop linear system_p = v(A � BKB)p has two real and two
complex conjugated eigenvalues; all three real parts are distinct. This is
enough to say that the unconstrained linear closed-loop system forms
a contraction map for positive times,maxt�0 ke

(A�BK )tk = 1,
wherek � k is the operator norm. In other words, the ellipsoids of

(a) (b)

Fig. 4. (a) The succesful initial conditions and the fitted ellipsoid^E . (b) The
switching surfaces (in ).

initial conditions containing the origin are positively invariant sets [2]
for the closed-loop linear system. Such ellipsoids are level surfaces of
the quadratic Lyapunov functionVB = p

TPBp.
2) Qualitative Analysis of the Basin of Attraction:It is in general

difficult to draw conclusions on the invariance properties of the flow of
a nonlinear system. If in addition one takes into account the state and
input constraints (7)–(9), then an analytic description becomes almost
impossible [10]. Therefore, in order to obtain estimates of the region of
attraction of the linear controller� = �KBp and of the contractivity
of the resulting integral curves, we rely on the numerical simulation of
the closed-loop behavior of the original nonlinear system (6), paired
with the linear controllerKB

_p = FB(p) = v A(p) + B(p;�KBp) : (17)

In order to obtain a graphical representation of the results, in the fol-
lowing we neglect they3 component of the state space, which is by far
the less critical one with the LQ controller in use.

The cloud of initial conditions that represents the region of attraction
closely resembles an ellipsoid in̂p = [�3 �3 �2]

T space. The fitting of
an ellipsoidÊ strictly contained in the set of succesfull initial conditions
can be done by direct investigation, see Fig. 4(a). The principal axes
q̂ = [q1 q2 q3]

T of the ellipsoid are related tôp by an orthogonal
transformation

p̂ = R̂E q̂ R̂E 2 SO(3):

Calling "1, "2, and"3 the semiaxes of̂E , the ellipsoid is given by the
algebraic equation

Ê =
q21

"21
+
q22

"22
+
q23

"23
= 1 : (18)

Taking into account also they3 component of the initial conditions, the
ellipsoidE 2 4 is given by

E =
q21

"21
+
q22

"22
+
q23

"23
+
q24

"24
= 1 (19)

with "4 � "i, i = 1; 2; 3. InD, the difference with respect to Fig. 4(a)
can hardly be appreciated.

From Fig. 4(a), we draw the qualitative conclusion that for the
closed-loop nonlinear system̂E is a positively invariant set.
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B. Stabilization for Forward Motion

Whenv > 0, in (16) the two unstable poles move on the open left
half of the complex plane. Considering the subsystemp̂ means ne-
glecting one of the two poles in the origin. The origin ofp̂ is asymp-
totically stabilizable by linear feedback and this time convergence for
the nonlinear system in(��=2; �=2) � (�1.3; 1.3) � (�0.6; 0.6)
is a less critical problem. The reason for neglectingy3 when moving
forward is again the same: the closed-loop mode relative toy3 has a
natural time constant several orders of magnitude higher when com-
pared to the other states.

Assume for examplev = 1. Extracting from (11) the three-dimen-
sional (3-D) system (̂A; B̂), linearization around the origin of (3)–(5),
it is possible to choose a gain̂KF such that the closed-loop system
_̂p = v(Â�B̂K̂F)p̂ is asymptotically stable and has three distinct real
modes. The practical rule here for the selection of the eigenvalues is to
try to have all three closed-loop poles of the same order of magnitude.
The unavoidable input saturation will not destroy stability anyway. As-
suming no control ony3, the variation iny3 due to the forward closed
loop is hard to compute explicitly, but a worst-case analysis can give
an upper bound on it.

Proposition 2: Assume the task of the forward controller
K̂F is to steer the system (̂A; B̂) inside the ellipsoidE�. The
variation on y3 starting from any admissible initial condition
p0 = [y3 �3 �3 �2 ]T is bounded by

j�y3j �
� cos �3 � cos �3

�3 �min(Â� B̂K̂F )
(20)

with � = j1+ (M1=L1) tan�2 tan�sj and�3 =
p
�"̂max.

Proof: From (2), if� = j1+ (M1=L1) tan�2 tan�sj, then

j _y3j � � jsin �3(t)j : (21)

We need to compute a bound on the value of�3(t) and to quantify
the settling timets of the �3 mode from�3 to its entering into the
ellipsoid E�. Since for the forward motion stability is not a problem
even in presence of saturations, deriving a bound on the settling time
of �3, we consider only the linearized system. The stable closed-loop
system _̂p = (Â � B̂K̂F)p̂ has three distinct real modes. Its integral
curvesp̂(t) = e(Â�B̂K̂ )tp̂0 can be bounded as follows:

e�j� (Â�B̂K̂ )jI t
p̂0

2
�kp̂(t)k2

kp̂(t)k2 � e�j� (Â�B̂K̂ )jI t
p̂0

2

with I3 the 3-D identity matrix. Since there are no multiple closed-loop
eigenvalues, also the�3 mode alone is bounded by the slowest mode of
the closed loop

j�3(t)j � e�j� (Â�B̂K̂ )jt�3 :

In order to computets, we need to have a value of�3(t)
which is certainly inside the ellipsoid̂E� : fp̂T P̂E p̂ = �g.
The circle �min(P̂E)kp̂k22 = mini=1; 2; 3(�i)kp̂k22 = �
(do not count �4) is contained inside Ê�, therefore calling
�̂min = min

i=1;2;3(�i) = (1=maxi=1; 2; 3("i)) = (1="̂max),

for the �3 variable alone�3 = �=�̂min =
p
�"̂max does the job.

The desired bound on the settling time is then

ts =

ln
�

j� j
�min Â� B̂K̂F

: (22)

Integrating (21) from 0 tots, we obtain

jy3(t)� y3 j � �
t

0

sin e�j� (Â�B̂K̂ )j��3 d�

i.e.,

j�y3j �
� cos e�j� (Â�B̂K̂ )j��3 � cos �3

�3 �min(Â� B̂K̂F )

� � cos �3 � cos �3

�3 �min(Â� B̂K̂F )
:

Sincets is inversely proportional to the smallest eigenvalue of the
closed loop, the more the slowest mode (i.e.,�3) is “speeded up” by
K̂F , the sooner̂p enters insideE�. Obviously, moving eigenvalues
deeper in the left half of the complex plane implies more problems
with the input saturation.

The bound (20) can be used to characterize the region of attraction in
D for an ellipsoid likeÊ� as attractor set for the forward motion case.
Neglecting the input saturation, it basically coincides withD except
for a cut in they3 direction.

Corollary 1: In D, the region of attraction to an ellipsoid̂E� of the
controllerK̂F is given by

D� = (�y3 +�y3 ; y3 ��y3 )� (��3 ; �3 )

� (��3 ; �3 )� (��2 ; �2 ) (23)

where

�y3 (�) =
1 + M

L
tan�2 tan�s cos �3 � cos �3

�3 �min(Â� B̂K̂F )
:

Such a restriction is not really drastic; in numbers, with our choice of
K̂F , it amounts to about 30 cm. Furthermore, one can add that�y3
is a worst-case bound and that the choice ofy3 = 75 cm is purely
arbitrary.

C. Reversing Along an Arc of Circle (Alignment Control)

If instead ofp or p̂ only the backward stabilization of the rela-
tive angles�p = [�3 �2] is required, then a linearization like (15) can
be used and the desired equilibrium point�pe can be indifferently the
origin or a pair of constant angles like in (13) and (14). In this case,
the truck and trailer will be stabilized along a circular trajectory as
computed in Proposition 1. We can consider the circular trajectories
corresponding to, e.g.,j�ej � �e = (4/5)�s (see Proposition 1 for
the corresponding radii), for which the equilibrium point is compatible
with the system constraints and a certain margin is left around it before
reaching the steering actuator saturation. The controller� = � �KB �p
can be computed like in Section III-A by another LQ problem. The re-
gion of attraction of the equilibrium is an ellipse in the�p plane, for
each value of�e in j�ej � �e . If a Frenet frame is chosen on the arc
of circle [27], then the encoders information can be used to attain local
stabilization ofp (and not just of�p) along the desired arc.

IV. SWITCHING CONTROLLER

The region of attraction of the backward controller is only a subset
Ê of the entire domainD. Starting from outsidêE , it is necessary to
first drive forward, for example, with a controller likêKF until the
system enters insidêE and only then switch to backward motion. When
reversing, the main manifestation of a destabilizing perturbation is a
jack-knife effect on the relative angles. Just like on a full-scale truck
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and trailer vehicle, the only way to recover from such a situation is
to move forward and try again. So, in order to guarantee stability of
the backward motion inD and not only inside the ellipsoid̂E for the
nominal model, and in order to cope with the perturbations, one single
controller is not enough. The switching variable between the two con-
trollers is the longitudinal velocityv. For example, we assume that
v 2 f�1;+1g

�
=I. The backward regime is selected byv = �1 and

the forward one byv = +1. Since the longitudinal inputv is a con-
trol input, if we assume thatv 2 I thenv becomes a controlled logic
variable. Moreover, if the selection of the logic value ofv is made ac-
cording to a partition of the state space, the overall system with multiple
controllers becomes a feedback controlled system. This is feasible in
our case since we have on-line full state information available.

A. Selection of the Two Switching Surfaces

Two are the switching surfaces that delimit the partition of the state
space and their crossing in a prescribed direction by the flow of the
system induces a sign change inv. This, in its turn, causes the inver-
sion of the direction of motion and induces the activation of the cor-
responding linear state feedback controller. These switching surfaces
(call themS

�+ andS+�) have to be chosen such that they give to the
pointp = 0 of the backward motion the character of global attractor (in
D). Since in both regimes the origin is the closed-loop local asymptoti-
cally stable equilibrium point, we choose bothS

�+ andS+� as closed
hypersurfaces in 4 containing the origin in their interior.

1) The Switching Surface From Forward to Backward Motion:
S+�: From Section III-A,S+� has to be contained insideE . The
simplest choice is to considerS+� = E� for some� such that
(1/2) < � < 1. The tradeoff is the following:

• if S+� is large (� ! 1), the system will be sensitive to distur-
bances and more easily destabilized by perturbations (meaning
more switches can occur);

• if S+� is small (� ! 1/2), the forward regime will be very long,
which is often unacceptable for practical implementations.

Ellipsoids smaller thatE1=2 are also not recommendable for other rea-
sons, like the possibility of being completely “jumped over” in case of
relevant sensor error.

2) The Switching Surface From Backward to Forward Motion:
S
�+: Such a switching surface has to “tell” the system that backing

is not going well and the trailers need to be realigned. The choice is
quite flexible; the only constraint is thatS+�, S

�+, and the sides of
D must not intersect. In particular, the set distance betweenS+� and
S
�+ gives the hysteresis between the two regimes. If this distance is

positive, problems like chattering will be avoided. One simple choice
for S

�+ is for example to use a cube in4 which is a rescaling ofD
by a factor less than 1.

B. Control Logic forv

D is divided into three nonintersecting regions:

• C
�

= region insideS+� wherev = �1;
• C = region betweenS

�+ andS+� wherev can be either+1 or
�1;

• C+ = region outsideS
�+ (C+ = D\(C[C

�

)?)wherev = +1.

Changes onv occur only at crossing with the rules of the finite state
machine of Fig. 5.

C. Convergence for the Nominal and Perturbed System

For the nominal system, we can assert the following.
Theorem 1: Under the assumptions of invariance ofE , the system

(6) with the two controllersK̂F andKB , respectively, for the cases
v = �1 andv = +1 and with the feedback rule of Fig. 5 forv 2 I

Fig. 5. The hybrid automaton associated with the control logic.

asymptotically coverges to the origin in backward motion from any
inital condition inD�.

Proof: From the analysis of Section III and looking at the
switching rules of Fig. 5, the following order relation is the only
possible one for the system:

C+
v = +1

! C

v = +1

! C�
v = �1

:

In fact, from anyp0 2 D�, the controllerKB steers the system inside
S+� andS+� is a positively invariant set for the controller̂KF . In the
two regionsC+ andC, the controllerKB stabilizes onlŷp. OnceS+�
is fixed, so isD� and inD� the corresponding excursion ony3 cannot
exitD by Corollary 1.

So, for the nominal system, the switching surfaceS�+ is never in
use. Due to the unstable equilibrium point, the effect of perturbations
is critical in C�. Since the whole stabilization developed here occurs
along a trajectory, we cannot expect the perturbations affecting the
system to be vanishing at the equilibrium point of (17). For example,
the two potentiometers for the measure of the relative angles�2 and�3
introduce an error of�4� also at steady state. Similarly, all the distur-
bances affecting the real system can be considered nonvanishing. When
a perturbation is large enough to pull the state out ofE the system
diverges. Trying to quantify the amplitude of the destabilizing pertu-
bations and, consequently, trying to inferr total stability for a class of
bounded perturbations is very hard in our situation because of the input
saturation involved. The destabilized system keeps driving backward
until it hits theS�+ surface. After that, it inverts the direction of mo-
tion and tries again to converge insideS+� with the forward controller.
In this part, stability is not undermined by the pertubations because the
system is open-loop stable, but perhaps the convergence rate (and there-
fore the settling timets and�y3) can be.

As said above, if theS�+ andS+� do not touch each other, degen-
erate switching phenomena (normally referred to as Zeno chattering)
do not occur. Furthermore, also the different pole placement philosophy
adopted in the two controllerŝKF andKB (in one the critical mode,
the�3 mode, is slow, in the other it is instead faster) is meant to avoid
a chattering type of behavior (like keep moving the system back and
forth between the same points onS�+ andS+�) which can happen if
the two closed-loops resemble each other.

V. ANOTHER SWITCHING SCHEME

At the switchingC
S

���!C�, if j�3j is large, instead of the controller
K̂F one can think of using a different strategy, based on realigning only
the�2 and�3 angles leaving�3 free and then recover�3 if needed by
reversing along an arc of circle with�KB . Neglecting�3 in the forward
motion means reducing considerably its duration, as the�3 mode is
the slowest of the three. This strategy allows to greatly increase the
convergence rate wheny3 is large andy3 � �3 > 0. A typical situation
is shown in Fig. 6. The modes needed for its implementation are:

1) forward control of�2 and�3;
2) reverse along an arc of circle;
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Fig. 6. Calculation of the arc of circle for reverse motion.

Fig. 7. The new hybrid automaton.

3) reverse along a straight line.
Assumev = �1, �3 > 0 andy3 > 0 (Fig. 6). Call~p the state on the
switching surface�S+� and~x3 the corresponding coordinate on the ref-
erence line. The arc of circle tangent to both the line through the point
(x3; y3) of orientation~�3 and to the straight liney3 = 0 is unique,
as it has a radius~r3 = ~y3=(sin ~�3 tan(~�3=2)) and center of rotation
(~x3� ~y3(1+ cos ~�3)=sin ~�3; ~y3=(sin ~�3 tan(~�3=2))). Sincev = �1,
we take the length of the arc fromP3 to the axisy3 = 0, ~r3 � ~�3, as
duration of the reversing along arc of circle mode i.e., as time between
the switchv : +1 ! �1 and the switch from reversing along arc of
circle to reversing along straight line. TheS

�+ switching surface re-
mains in use while for the switchingv : +1 ! �1 we consider only
the�2, �3 angles:�S+� = �22=�"

2
2 + �23=�"

2
3 = 1 with �"2 and�"3 of

the same order of magnitude. The forward controller then is a reduced
version ofK̂F with only two nonnull gains. The reduced system (12)
with v = +1, �pe = [0 0]T is asymptotically stabilizable and the du-
ration of the forward motion betweenS

�+ and �S+� is normally quite
short compared to that of Section IV. Calling~t the time at which the
flow of the system hits�S+�, the complete hybrid automaton is depicted
in Fig. 7.

VI. PRACTICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS

For the truck and trailer shown in Fig. 1, the controller was imple-
mented using a commercial version of PC/104. It was written in C-lan-
guage and used at a frequency of about 10 Hz since the velocity of the
system was very low. Figs. 8 and 9 present the result of a simple real
maneuver. The switching scheme used is the two-state automaton de-
scribed in Section IV. The vehicle starts with saturated relative angles

Fig. 8. Experiment # 1: Sketch of the motion of the vehicle. The dotted line
represents the path followed by the (x ; y ) point.

Fig. 9. Experiment # 1: (a)Relative angles� and� and (b) steering input�.

and first drives forward in order to realign itself, then reverses along
the reference line. Notice that since the�3 mode is slower than those
of the relative angles, most of the forward motion is needed to get�3
inside the ellipsoidS+�. It is instructive to compare [Fig. 9(a)] the ac-
tivity of the feedback input when the open loop system is stable (upper
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Fig. 10. The trajectory of Fig. 8 in thêp space and the ellipsoid^E . The points
+ represent initial conditions from which the backward controller alone fails to
converge on experimental trials.

Fig. 11. Experiment # 2: Sketch of the motion of the vehicle. The dotted line
represents (x ; y ).

plot) and when it is unstable (lower plot). The experimental validity of
the heuristic ellipsoidE was verified by several trials. For the back-
ward controllerKB alone, some of the unsucessful initial conditions
belonging to the quadrant (�3 = 0; �2 � 0; �3 � 0) are shown in
Fig. 10: they all lay outsideE . In the same picture the switched integral
curve used in the experiment of Fig. 8 is also reported. In this exper-
iment we useS+� = E4=5. As expected, after entering insideE , the
trajectory does not escape anymore. The second experiment (Fig. 11)
shows part of the switching scheme described in Section V. Starting
from a jack-knife position, the vehicle moves forward, realigns the rel-
ative angles and then reverses along an arc of circle until hitting the
desired reference line. At this point the third state (reversing along the
straight line) takes over (not shown in the experiment). Notice how the
forward part of the motion is shorter than in the first experiment as only
the two relative angles are considered in the realignment.

VII. CONCLUSION

For the problem of reversing a multibody wheeled vehicle, in this
paper we have tried to study and “integrate” different aspects: its the-
oretical conceptualization, its solution, and its practical implementa-
tion. From a theoretical viewpoint, stabilization in the presence of si-
multaneous instability and hard constraints is a very challenging and
largely open field of research. From a practical perspective, a difficult
real problem is studied and a solution is proposed whichautomatesthe
practical way of solving it, by the experienced drivers.
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