
Temporal Landscapes:
A Graphical Temporal Logic for Reasoning

Brendan Fong∗ Alberto Speranzon David I. Spivak˚

Abstract

We present an elementary introduction to a new logic for reasoning about
behaviors that occur over time. This logic is based on temporal type theory. The
syntax of the logic is similar to the usual first-order logic; what differs is the notion
of truth value. Instead of reasoning about whether formulas are true or false, our
logic reasons about temporal landscapes. A temporal landscape may be thought
of as representing the set of durations over which a statement is true. To help
understand the practical implications of this approach, we give a wide variety of
examples where this logic is used to reason about autonomous systems.

1 Introduction

Logical formalization of temporal considerations has a long and rich history, though
the first modern treatment is probably the tense logic of Prior [Pri67], which has
yielded what is now known simply as temporal logic. In temporal logic, as in any
logical system, one has a syntactic way of building new formulas from simpler ones,
say using conjunction and negation (ϕ ^ ψ), as well as a notion of model whose
purpose is to specify the truth value of each such formula.

The first innovation of temporal logic is that the truth value of a proposition should
be a function of time, for some notion (called a “frame”) T of time. For example, if we
take time to be the linear order T “ pR,ăq, then one writes 7.5 |ù ϕ to mean that ϕ is
true at time 7.5. The truth value for the conjunction or negation of formulas is simply
computed pointwise, for each time t.

Temporal logic gets its expressive power from various operators, which collect
information about other times into the current time. For example, in linear temporal
logic (LTL), one considers the binary until operator U. At time t, one may ask whether
ϕ will hold until ψ holds, denoted t |ù ϕ U ψ, which more precisely means that there
exists t1 ą t such that t1 |ù ψ and t2 |ù ϕ for all t ă t2 ă t1. One can understand all such
operators as given by some sort of quantification over t : T , replacing each formula,
e.g. ϕ, by a predicate ϕptq in one variable. Restricting first-order logic by requiring

∗Fong and Spivak were supported by AFOSR grant FA9550–17–1–0058.

1

that all atomic predicate symbols take only one variable, one obtains what is known
as first-order monadic logic, and adding the 2-ary predicate t ă t1, one obtains what
is known as the first order monadic logic of order, FOpăq. It was shown by Kamp
[Kam68] that temporal logic with the until operator, together with its past-tense
cousin since, is precisely as expressive as FOpăq. Various additions and restrictions
have been proposed over the years, in attempts to co-optimize between expressivity
and computability.

A completely different approach to temporal reasoning, known as temporal type
theory (TTT), was given in [SS19]. Instead of defining new logical operators that collate
past and future times into the present, temporal type theory alters the very notion
of truth itself, to make truth inherently depend on time. The goal of this article is to
describe, in elementary terms, how TTT makes this idea precise, as well as how it can
be used in practice.

Temporal type theory begins by defining a topological space called the interval
domain IR, whose points are the closed intervals rt1, t2s Ď R, which we call time-
intervals, and whose open sets are generated by open intervals pa, bq, each of which
consists of all points rt1, t2swith a ă t2 ď t2 ă b. A sheaf B on IR is a type of behavior:
it assigns to each basic open pa, bq a set Bpa, bq P Set, and for every a ď a1 ď b1 ď b, it
assigns a restriction function ρ : Bpa, bq Ñ Bpa1, b1q that clips a longer-lasting behavior
x P Bpa, bq to a shorter-lasting behavior ρpxq P Bpa1, b1q. Behavior types include:

1. N, Z, Q, and R, the behavior of natural numbers, integers, rationals, and reals
(unchanging over any interval pa, bq);

2. rR, the behavior of “varying” real numbers (changing continuously over any
pa, bq);1

3. for any vector field V on a topological space, the behavior of integral curves
through V (of duration b´ a);

4. for any graph G, the behavior of stochastically-timed walks through G;
5. more generally, for any hybrid system [Hen00], the behavior of all legal trajec-

tories;
6. Prop, the behavior of truth values, also known as propositions, which one can

think of as audits or monitors of behavior. Prop will be the main character in
this paper;

7. the empty behavior and the singleton behavior (Time itself), as well as products,
unions, subobjects, quotients, and exponentials of all the above.

Discussing behavior types in detail is out of scope for this paper, as it includes
definitions of sheaves and toposes; the interested reader is referred to [SS19] for a
technical discussion, or to [FS19, Chapter 7] for a gentle introduction. We do not
assume the reader has knowledge of category theory, sheaf theory, or topos theory.
Our goal in this paper is to give the reader a relatively self-contained understanding
of Prop—the behavior type of truth values—in terms of temporal landscapes.

1Note that the constant reals can be considered as a subtypeR Ď rR of the varying real numbers.

2

We will also not give a detailed comparison between the expressive power of
various temporal logics, such as Metric Interval Temporal Logic (MITL) [AFH96] or
Signal Temporal Logic (STL) [MN04], with that of temporal type theory. The main
difference is simply that temporal type theory is a type theory, meaning that it can
combine and reason about various types of behaviors, as exemplified above. Another
is that temporal logic assumes a kind of omniscience about the future: the truth
value of a proposition at time t1 can contain information about what occurs over a
whole interval rt1, t2s. TTT does not have this omniscience: a proposition whose truth
value depends on more than one moment—such as “whenever A occurs at time t1,
B must occur before time t2”—is only falsifiable on long-enough intervals, e.g. those
containing rt1, t2s. The aggregated truth value of a proposition over all intervals is
its temporal landscape; information about what occurs over an interval is “stored” over
the interval itself, not at its left endpoint. However, LTL and MITL do embed as a
fragment of TTT [SS19, Chapter 8.6], so proofs from these logics are valid in TTT.

The differences between TTT and variants of standard temporal logic are numer-
ous; we concentrate our efforts here on explaining how to work with the former. In
particular, our focus will be on the descriptive power of temporal type theory: through
increasingly complex examples we shall demonstrate how TTT—and in particular
temporal landscapes—can be used to accurately model the relevant time-varying
phenomena. We hope that this will be enough to give the reader a basic understand-
ing of these ideas, even if translating these ideas into reasoning power then holds few
subtleties.

Luckily, the base language of TTT is standard higher-order logic, which is quite
similar to first-order logic. Not only should reasoning in TTT thus be more familiar to
users with a grounding in predicate logic, a wide variety of proof assistants, including
HOL, Lean, and Coq, can hence be easily adapted to provide formal verification of
reasoning in TTT [CH88; Mou+15; NPW02].

We will begin in Section 2 by defining temporal landscapes and the logical op-
erations on them. In Section 3 we give several increasingly expressive examples of
temporal landscapes in the context of autonomous agents. Finally in Sections 4 and 5,
we briefly discuss how temporal landscapes may be used in practice, including how
to reduce their computational complexity, and then conclude.

2 Temporal landscapes

Temporal landscapes provide the truth values of a logical system, which we call temporal
landscape logic. Truth values may be thought of as acceptable answers to “yes/no”-
style questions. For example, in standard propositional logic, the truth values are
simply true and false. In propositional logic then, the question “Is it raining?”
may be answered with “yes” (true) or “no” (false). In temporal landscape logic,
the answer to this question is a temporal landscape indicating precisely those time
intervals during which it is raining. Let us be a bit more precise.

3

2.1 Definition of temporal landscape

LetR be the set of real numbers, thought of as representing points in time. Given two
times t1, t2 P R with t1 ď t2, we write rt1, t2s for the set of all times between t1 and t2;
we call this a time interval. Graphically, we may represent a time interval by a point
above the diagonal in the plane R2:

t1

t2
‚rt1, t2s

A temporal landscape is a set of time intervals with two special properties. The
first is known as down-closure: if a time interval rt1, t2s is in the temporal landscape,
and rt11, t12s is contained in rt1, t2s, then rt11, t12s is in the temporal landscape too. This
property makes the assumption that if an assertion holds throughout a time interval,
then it holds on all subintervals. For example, if it is raining throughout the time
interval from 9:00 to 13:00, then it is also raining throughout the time interval from
10:00 to 10:45. In pictures, this means that a temporal landscape must be closed under
both moving right and moving downward:

t1

t2
‚

If an assertion
holds here...

˝rt
1
1, t

1
2s

...then it must
hold here too

(1)

The second property of temporal landscapes is an openness (sometimes called a
roundedness) property: if an assertion holds on some rt1, t2s, then there exists some
larger interval, rt11, t12s with both t11 ă t1 and t2 ă t12. This larger interval may only
be infinitesimally larger, but it must be strictly larger on both sides. In pictures, we
illustrate this as follows:

‚

If an assertion
holds here... ˝

...then there exists
a larger interval
where it holds too

t1

t2

(2)

The above is summarized in Definition 2.1.

4

Definition 2.1. A temporal landscape onR is a set L of time intervals rt1, t2s Ď R, where
t1 ď t2, such that

(a) if rt1, t2s P L, and t1 ď t11 ď t12 ď t2, then rt11, t12s P L.
(b) if rt1, t2s P L then there exists t11 ă t1 ď t2 ă t12 such that rt11, t12s P L.

We write Prop for the set of temporal landscapes.

Together, requirements (a) and (b) state that temporal landscapes form the open
sets of the Scott topology on the interval domain IR, a well-studied topological space
in domain theory [Gie+03]. While we will not need any topos or sheaf theory here, we
remark that sheaves on IR form a topos, whose subobject classifier consists precisely
of temporal landscapes; this topos is the subject of [SS19].
Remark 2.2. By definition—in particular Definition 2.1 (b)—a temporal landscape L
does not include its boundary: it is an open set in IR. Hence in our examples so far,
Eqs. (1) and (2), we’ve drawn them using a dotted line. From now on, e.g. in Eq. (3),
we use the visually simpler convention of drawing them with a solid line.

The simplest sort of temporal landscape is that of a roof ; these form the basis for
the topology on IR.

Definition 2.3. Given a pair a ă b in R, the roof over a, b is the temporal landscape

TimeBetwpa, bq :“ trt1, t2s | a ă t1 ď t2 ă bu
of all time intervals between a and b. We draw this as follows:

a

b

TimeBetwpa, bq
(3)

Given any pair of real numbers a ă b, a temporal landscape on pa, bq is a temporal
landscape that is a subset of TimeBetwpa, bq.

Generically, a temporal landscape is a (possibly infinite) union of roofs. For
example, yesterday’s rainfall might be described by the temporal landscape

1:00

5:00
7:00

9:00

13:00

20:00

(4)

5

which says that it was raining from 1:00 to 5:00, 7:00 to 9:00, and 13:00 to 20:00.
This is simply the union of the roofs TimeBetwp1:00, 5:00q, TimeBetwp7:00, 9:00q, and
TimeBetwp13:00, 20:00q.

Note, however, that this temporal landscape can be generated by describing the
rainfall pointwise: it suffices to simply answer the question whether it was raining at
each point in time. This sort of semantics is describable with the usual temporal logic
and its variants.

Temporal landscapes go beyond this. A key advantage of temporal landscapes is
that they can describe temporal properties that cannot be established by considering
only instantaneous points. Such descriptions are especially useful in specification or
prediction of temporal behaviors. For example, tomorrow’s rainfall forecast might
predict rain between 2:00 and 17:00, but also that the rain will never last more than
three hours at a time. This would be represented by the landscape

2:00

17:00

‚
Raining too long, [2:06, 7:20]

‚
[3:55, 6:12], under three hours of rain

Note that this is an infinite union of the roofs TimeBetwpt, t ` 3q for all t between
2:00 and 17:00. Each point in this landscape represents a time interval over which
continuous rainfall is forecast to be possible. So the fact that [3:55, 6:12] is in the
green region means that it is possible that it will rain continuously from 3:55 to 6:12,
while the fact that [2:06, 7:20] is outside the green region means that it will not rain
continuously from 2:06 to 7:20.

Similarly, a storm that might hit for a short duration earlier in the day and/or a
longer duration later in the day, but will definitely break at some point between 5:30
and 9:30, might be depicted by the temporal landscape:

2:00

8:00
6:00

17:00

‚
Rain break predicted in interval [5:30, 9:30] ‚

Rain possible throughout

Observe in particular that the point [5:30, 9:30] does not lie within this temporal
landscape; this formalizes the forecasted break in the rain.

6

Here are a few generic examples of temporal landscapes:

The condition here is that the curves remain above the diagonal line and that their
slope is piecewise continuous and remains in the interval r0,8s. Note that rotating
by 45˝, the slope condition becomes precisely the statement that the curve must be
what is known as 1-Lipschitz.

2.2 Temporal landscape logic

Temporal landscapes form the truth values of a logical system. More precisely, tempo-
ral landscapes form the elements of what is known as a Heyting algebra. This means
that standard logical constants and operations, such as true, false, AND (^), OR
p_q and implication pñq have interpretations as temporal landscapes and operations
on them.

To begin, we introduce the temporal landscapes true and false. The temporal
landscape true contains all time intervals:

true :“ trt1, t2s | t1 ă t2 P Ru .
This landscape is the maximal one and is depicted as follows:

t1

t2

0
1

2
3

4
5

6
7

8
9

true

(5)

On the other hand, the temporal landscape false contains no time intervals at all:
false :“ ∅. It is the minimal landscape is depicted as empty:

0
1

2
3

4
5

6
7

8
9

false

(6)

Given temporal landscapes ϕ and ψ, their conjunction ϕ ^ ψ is given by their
intersection, and their disjunction ϕ _ ψ is given by their union. For an explicit

7

example of conjunction, see Eq. (10) on page 13. In that example, the temporal
landscape FreepNbrpvqq on the right is the conjunction—that is, the intersection—of
the temporal landscapes Freepwrq and Freepwuq on the left and center.

It is straightforward to check that the results of these operations are again temporal
landscapes, and that^,_ obey the usual properties of (constructive) first-order logic;
for example, for any temporal landscape ϕ, we have ϕ^ true “ ϕ.

Defining an implication that obeys the usual properties is a bit more subtle. Given
temporal landscapes ϕ and ψ, we define the temporal landscape

pϕñ ψq :“ tra, bs | TimeBetwpa, bq X ϕ Ď ψu.

To become acquainted with implication in general, we start with a special case, namely
that of negation.

The negation operator ϕ is given by ϕ :“ pϕ ñ falseq. Equivalently, since
false is the empty set, we may write

 ϕ “ tra, bs | TimeBetwpa, bq X ϕ “ ∅u.

Thus the negation of a temporal landscape ϕ consists of all time intervals I that have
empty intersection with any time interval in ϕ. In diagrams, this operation takes a
landscape ϕ and draws a roof wherever the landscape is false (i.e. flat against the
diagonal). For example, given the temporal landscapes on the left, its negation is
shown on the right:

0
1

2
3

4
5

6

ϕ
0

1
2

3
4

5
6

 ϕ

where we have restricted the landscapes over the time window p0, 6q.2
The visual intuition of the implication ϕñ ψ generalizes that of negation, replac-

ing the empty landscape false with ψ. The temporal landscape of ϕñ ψ contains a
roof over all time intervals within which ϕ is contained in ψ:

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

ñ

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

˛
‹‹‹‹‹‹‹‹‹‹‹‚

“

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

2In the following examples, we will often restrict ourselves to temporal landscapes on some arbitrary
bounded interval, typically starting at 0, just for typographical convenience.

8

Now that we have defined the logical connectives, we move on to the quantifiers
Dpx : Xq. P pxq and @px : Xq. P pxq. The simplest case is when these quantifiers range
over a constant type A, which we may think of simply as a set.3 Given a set A,
a function P : A Ñ Prop is a collection of |A|-many temporal landscapes. Taking
their union defines the temporal landscape Dpa : Aq. P paq, which will be a temporal
landscape. Taking their intersection may not satisfy condition (b) of Definition 2.1,
so we define @pa : Aq. P paq to be the largest temporal landscape contained in this
intersection.

Throughout this document, the reader will see the connectives^,_,ñ, , and the
quantifiers D and @. In each case, they refer to the operations on landscapes defined
above.

3 Predicates over grid worlds

In this section we give increasingly expressive examples of how to use temporal land-
scapes to describe the behavior of an agent moving in various types of environments.
We start with a fairly standard model, used in the Artificial Intelligence (AI) literature,
to describe motions of an agent over a discretized space or environment.

In a non-temporal situation, it is typical to represent an environment as a two-
(or higher-)dimensional regular grid where each region of the space is a cell and
cells overlap only on specified boundaries. Mathematically it is convenient to model
this with an undirected graph G “ pV,Eq, where V “ t0, . . . , Nu is a set of vertices,
associated to subdivisions (or cells) of the environment, and E Ď V ˆ V is the set of
edges representing the fact that it is possible to move from one subdivision to another.

As we are working temporally, we replace sets with behavior types, which may be
thought of as time-varying sets. More precisely, a behavior type specifies, for every
temporal landscape, a set of behaviors that could take place over those durations.
These sets of behaviors are required to obey a certain compatibility condition, so
that for example behaviors over long time intervals restrict to behaviors on shorter
subintervals.

Modelling the environment: constant and non-constant behavior types

Static environments. To simplify matters, let’s first consider the case in which the
environment does not vary in time. For this, we use constant behavior types: given a
setX, the constant behavior type onX, by abuse of notation written again simply as X,
is the behavior type that for every temporal landscape simply specifies X as its set of
possible behaviors.

Suppose we want to say that our environment is modelled by the graph pV,Eq,
and that it does not change over time. To do this, we simply take V and construct
its constant behavior type V , and take E as the constant subtype of V ˆ V consisting

3In temporal type theory we can also quantify over non-constant behavior types, e.g. @px : Xq. P pxq,
but this is a bit more technical. Since such quantification appears only in a single subsection (e.g. in
Eq. (14)), we simply refer the reader to [SS19] for a definition.

9

precisely of the pairs pv1, v2q in the setE. The constancy of the subtypeE says that the
adjacency relation does not change: v1 and v2 either are adjacent or are not adjacent,
independent of time.

To describe this fact logically in temporal type theory (TTT), we may write the
formula

@pv1, v2 : V q. pv1, v2q P E _ pv1, v2q R E.
That said, in higher order logics like TTT, one typically exchanges subobjects for
predicates, e.g. replacing E Ď V ˆ V with E : V ˆ V Ñ Prop.4 Then the statement
would read

@pv1, v2 : V q. Epv1, v2q _ Epv1, v2q. (7)

If we impose axiom Eq. (7) then for any v1, v2, the landscape for Epv1, v2q is either the
always-true landscape true (see Eq. (5)), or the always-false landscape false (see Eq. (6)),
depending on whether we want an edge pv1, v2q or not. In this case we would say that
pV,Eq forms a constant graph.

Dynamic environments. It is also interesting, however, to decline to require that
our environment obey axiom Eq. (7), and thus model environments in which the
adjacency of cells changes over time. This makes sense in the autonomous setting if
we imagine that sometimes a door is blocked or a secret passage is opened.

That said, for most situations, including all that follows, it is good enough to use a
model of the environment where adjacency is symmetric: if v1 is connected to v2, then
v2 is connected to v1. Using the language of TTT, this means our environment obeys
the axiom

@pv1, v2 : V q. pv1, v2q P E ô pv2, v1q P E .
It will also be convenient to work with the function V Ñ pV Ñ Propq given by

currying E : V ˆ V Ñ Prop. It sends a cell v : V to the (time-varying) set tv1 : V |
Epv, v1qu of cells adjacent to v. For our example, we want to consider the notion of
neighbor, by which we mean an adjacent cell, not including the cell itself. For each
v : V , neighbor is the subtype of V defined by the formula

Nbrpvq :“ tv1 : V | v1 ‰ v ^Epv, v1qu .
It is worth noticing, once more, that we can interpret Nbr in terms of temporal land-
scapes, by considering Nbr : V Ñ pV Ñ Propq. This means that Nbrpvqpv1q is a truth
value—i.e. a temporal landscape—that describes when a given v1 : V is a neighbor
of v : V . Of course, if we assume that pV,Eq is a constant graph, again Nbrpvqpv1qwill
either be the true landscape or the false landscape, depending on whether v and v1
are neighbors.

In any case, notice that working with TTT feels much like working with the usual
predicate logic and set theoretic constructions. In contrast with temporal logic then,
where one must get used to working with new logical operators such as ‘until’ and
‘since’, for those who are trained in these languages, TTT provides an intuitive and
easy to read language for reasoning about time.

4Recall that Prop is the set of temporal landscapes; see Definition 2.1.

10

Free/occupied cells: the negation operator

We now expand our example by adding a predicate:

Occpvq : V Ñ Prop .

This predicate will be assumed to model the idea of a cell being occupied: for each cell
v, it specifies the set of time intervals over which v is occupied. We will see that this
predicate can capture situations that are more interesting than “mere occupancy”,
and that temporal landscapes provides a formal language to express such scenarios.

If a cell is not occupied, we will say that it is free. We further define Free :“ Occ;
for each v : V , the landscape Freepvq is the set of time intervals over which v is free.
As mentioned in Section 2.2, double negation is not a trivial operation (the logic is
constructive rather than Boolean). The predicate Occ gives a good example of why
this might be useful, i.e. why it makes sense that Occ ?“ Occ need not hold.

Suppose we have agentsA,B, andC , and predicatesOccA, OccB , andOccC , which
map a cell v to the temporal landscape of intervals over which the respective agent is
in v. Suppose that we wish to define Occ to be the predicate describing the intervals
over which at least one of the agents A, B, and C is in v. Note that this is slightly
ambiguous in English, but we will see that the negation operator in TTT allows us to
easily distinguish between the two readings of this sentence as Occ and Occ.

To do this, define Occ to be the disjunction of these three predicates. For each v,
Occpvq thus specifies the time intervals over which a single agent, whether it be A, B,
or C , remains in the cell throughout. Then Occpvq specifies the time intervals over
there is always at least one agent in v, but agents are allowed to come and go.

More concretely, fix some cell v and suppose that an agent A is in v throughout
the interval r0, 3s, an agent B is in v throughout r2, 4s, and another agent C is in v

throughout r5, 6s. Then the temporal landscapes for Occpvq, for Freepvq :“ Occpvq,
and for Free “ Occ are shown on the left, middle, and right, respectively:

0
1

2
3

4
5

6Occpvq

A

B

C

0
1

2
3

4
5

6Free “ Occpvq

0
1

2
3

4
5

6 Occpvq

While the middle diagram and right-hand diagram fit the usual interpretations of
“when” the room is free / occupied, they are derived from the left-hand diagram,
which is more expressive.

In particular, note that on the left-hand side diagram we have that Occpvq does
not contain the time interval r1.5, 3.5s, because this point falls in between the two
roofs corresponding to A and B occupying the cell. This might appear strange, since
there is at least one agent in the cell throughout r1.5, 3.5s, and thus we might expect
Occpvq to contain this interval. However, Occ expresses the more refined idea of those

11

intervals over which there exists any specific agent occupying v: agent A occupies v
on the interval r1, 3s and B occupies v on the interval r2, 4s; Occpvq is their union.

As an example of where the extra expressivity of Occ might be important, one
might recall a scene from the movie The Matrix, where the main character Neo has
déja vu, noticing the same cat appear twice in a similar spot, a signal of impending
danger. If the déja vu occurs over any interval in Occ, either A, B, or C , will notice
it, but there are intervals in Occ, such as r1.5, 3.5s, for which it cannot be noticed.
That is, if the cat appeared at 1.5 and then again at 3.5, then none of A, B, C will
witness both occurrences.

While the Matrix example is fictional and thus might appear unrealistic, there are
analogous realistic examples where the added expressiveness is useful in practice.
Consider a simple situation where an emergency light is placed within the cell v and
where two consecutive “blinks” of the light would represent a dangerous situation.
In the case the light is ON at 1.5 and again at 3.5, the temporal landscape for Occpvq
would correctly capture the fact that such an alarm would be missed as there is not
a single agent in the cell at those instances. Thus, unless A and B communicate
about the status of the light, the notification of danger would be completely missed.
Such communication—and memory / recall in general—amounts to a strategy for
persistently encoding intervallic facts into the present state.

Objects in a room: quantifiers

In this subsection we use TTT to describe when neighbors of a cell are free (unoccu-
pied), despite possibly moving obstacles. This might be important, for example, in the
case of autonomous vehicles, where you might want to know when it is immediately
adjacent to an obstacle, and hence should be wary of a collsion.

We will consider two scenarios, both depicted by the following diagram.

vwℓ

wu

wr

wd

(8)

In these scenarios the large black dots each represent an obstacle. In the first scenario
the objects are stationary; in the second, they move in the direction shown by the
arrow.

To begin, note that we can extend a predicate Free over any subtypeN : V Ñ Prop

as follows:5

FreepNq :“ @pv : V q. Npvq ñ Freepvq . (9)

5Note that FreepNq is (constructively) equivalent to @pv : V q.Occpvq ñ Npvq.

12

This predicate describes the intervals over which all v P N are free. In particular, we
will be interested in FreepNbrpvqq for a cell v, which tells us when every neighbor of v
is free, or equivalently, when none of v’s neighbors are occupied.

Static objects. Assume that the objects, represented by the two large black dots, are
static (i.e. forget the arrows in (8) for now). Consider the cell v indicated in (8). In
the case that the black objects are static, one sees that the predicate FreepNbrpvqq is the
always-true landscape true, since the configuration of “free” cells does not change
over time. In particular, if we were to draw the temporal landscapes Freepwq for each
w : Nbrpvq, each one would be the always-true landscape, and so their conjunction
would be too.

Dynamic objects. Next we consider a situation in which the black dots represent
moving objects. In this scenario, the two objects move in the indicated directions (one
downwards and the other leftwards) at a rate of one cell per unit time. When they
reach a cell adjacent to boundary of the domain, they remain there forever after.

In this case there is an equality of predicates Freepwℓq “ Freepwdq; both correspond
to the always-true landscape, because these two cells are never occupied by either of
the moving obstacles. For the predicate Freepwrq, however we note that the cell will
be occupied for one time unit, between 3 and 4. Thus the cell wr is free for the interval
r0, 3s, and of course for any subinterval of it, such as r1, 1.46s. The cell wr is also free
for any interval r4, bs, as long as 4 ă b; the temporal landscape Freepwrq is shown on
the left below. Similar reasoning applied to Freepwuq yields the temporal landscape
shown in the center below:

0
1

2
3

4
5

6
7

8
9

Freepwrq
0

1
2

3
4

5
6

7
8

9

Freepwuq
0

1
2

3
4

5
6

7
8

9

FreepNbrpvqq

(10)

The temporal landscape for FreepNbrpvqq is the conjunction of these temporal land-
scapes, i.e. all of v’s neighbors must be free. As described in Section 2.2 the resulting
temporal landscape is going to be the “minimum” landscape—shown in red bold-
face on the right in (10)—of the four landscapes shown in dashed lines Freepwℓq and
Freepwdq in black, Freepwrq in green, and Freepwuq in blue.

Looking at the red landscape on the right of (10) we immediately see that the
neighborhood of v, namely Nbrpvq, is not free in the interval r3, 5s.

Max dwell time in a room: implication

LetAdenote the type of agents’ IDs and letPos: AÑ pV Ñ Propqdenote the predicate
that an agent a : A is at a vertex v : V . We also define a room R to be a subset of

13

vertices, R : V Ñ Prop.6 Then for an agent a : A, one may write Pospaq Ď R to denote
the proposition @pv : V q.Pospaqpvq ñ Rpvq. The situation is shown below, where we
indicate an agent by a blue dot and shade in lighter blue the cells forming a room R.

ÑÐ
Ò
Ò
Ñ

Ó
Ó

Ð
a

The wall—cells that are always occupied—are depicted in gray. Arrows depict possi-
ble trajectories that agent a can take to move within the room R and then exit.

Suppose we want to express the proposition that an agent stays in a roomR for at
most τ units of time before it must exit the room. To model this, for some τ : Rě0, we
can use the predicate

@pa : Aq. pPospaq Ď Rq ñ Dps : Rq.TimeBetwps, s` τq , (11)

which says that given an agent a, as long as a’s position remains in room R, there is
some start time s such that the clock remains between s and s` τ .

Let us consider an example. Let τ “ 3 and suppose the agent is not in the room
during the intervals r0, 3s and r6, 7s, but is in the room during r3, 6s and r7, 15s. The
landscapes for the left and right hand side of (11), namely Pos Ď R and Dps : Rq. s ă
t ă s` τ respectively, are shown in blue and red on the left hand side below:

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

(12)

Note the temporal landscape of the right hand side of (11) (red), it is an “always true”
capped at 3 time units. This is because given a time t there always exists a real value s
with t P rs, s` τ s, and such predicate is true for intervals rt1, t2s of length t2 ´ t1 ď 3.

The temporal landscape for the entire predicate (11), is shown on the right hand
side in (12). Note that in the interval [0,10] it is always true that the agent is within
the room for at most 3 time units, however from [7,15] it is never true that the agent is

6Note that we have not said A and R are constant over time: agents might come into service or be
decommissioned, and rooms might be constructed, demolished, or expanded over time.

14

within the room for at most 3 time units. Indeed, all we can say, is that on intervals of
length at most 3, the agent is clearly is in the room for at most 3 time units, however
this is not true for longer time intervals.

Regions and occupancy

Let us now consider a modified grid world, where instead of constructing a uniform
spatial partitioning of the environment we leverage what we as humans would argue
is a reasonable “semantic” subdivision of the space. Take for example a building, such
a partitioning would be based on more abstract concepts than cells, such as “rooms”,
“corridors”, “foyers” etc. To ground the discussion, consider the following diagram:

t0

t1
t2

t3

t4t5
t6

t7

t8

t9
t10

t11

RoomB

RoomA

Entrance

Lobby

Corridor

0 6
6

0

(13)

This picture depicts an agent (shown with a red dot) traversing a continuous envi-
ronment, following a trajectory shown by a dashed line. The environment has been
semantically subdivided into different regions (rooms).

In order to model the agent moving through the building, we begin by saying
what a trajectory is. We normalize the building to be the square S :“ r0, 6s2 Ď R2.
Then define

X :“
!
px1, x2q : rRˆ rR | 0 ď x1 ď 6 and 0 ď x2 ď 6

)

to be the set of all possible time-parametrized trajectories through the building, i.e.,
the 6-unit square domain S. For example, in Eq. (13), we depict a time-parametrized
trajectory over an interval pt0, t11), where say t0 “ 0, t1 “ 1, t2 “ 2, etc. making the
distance traveled per unit time non-uniform along the trajectory.

It is worth noticing that in earlier examples, we considered a discretized space,
whereas now we are considering a continuous space S, and behaviors defined over
such space.

As in the discrete case, suppose we are given a predicate Occ : S Ñ Prop that
models the subset of S (possibly changing in time) in which the agent cannot be.
For example in Figure 13 we show some gray regions, which are intended to be
walls, and hence always occupied/non-traversable. Thus if s : S is in a wall, we

15

put Occpsq :“ true. Again as in the discrete case, we use this to define a predicate
Free : XÑ Prop, by Freepxq :“ @ps : Sq.Occpsq ñ px “ sq.

The agent is moving through the building, but to be more realistic we could
imagine that the agent occupies space larger than a point, and that different parts of the
agent move at slightly different speeds. Hence the agent consists of several different
trajectories, all of which are close to one another, say within a distance of γ : R. We
define close : XˆXÑ Prop using the Euclidean norm closepx1, x2q :“ }x1 ´ x2}2 ď γ.
We also put an upper bound on the speed of the agent, say vmax : R, and define the
agent possible positions as the following behavior type:

AgentPos :“
"
p : XÑ Prop

ˇ̌
ˇ̌ @px1, x2 : Xq.

`pppx1q ^ ppx2qq ñ closepx1, x2q
˘ ^

@px : Xq. ppxq ñ `
Freepxq ^ ´vmax ď 9x ď vmax

˘
*
.

(14)
Here the bound ´vmax ď 9x ď vmax is the temporal landscape consisting of those
intervals rt1, t2s over which pt11´ t12qvmax ă }xpt11q´xpt12q}2 ă pt12´ t11qvmax holds for all
t1 ă t11 ă t12 ă t2. For more on derivatives in temporal type theory, see [SS19, Section
7.3].

Let us consider the constant type R :“ tRoomA,RoomB,Entrance, Lobby,Corridoru
representing the rooms as shown in Figure 13. Suppose we have a predicateRoom: RÑ
pX Ñ Propq, indicating the landscape on which a trajectory stays within a room. As
before, for any moving agent a : A with trajectories Pospaq : AgentPos, let us denote
with Pospaq Ď r the predicate @px : Xq.Pospaqpxq ñ Roomprqpxq, which says that
agent a is in a room r if all of the trajectories that make up a are in r.

The temporal landscape for the proposition Pospaq Ď r for when a single agent a
is in a room r is a roof. Thus the temporal landscape of

AgentInARoom :“ Dpr : Rq.Pospaq Ď r .

is obtained by taking the union—namely the max—of these roofs:

t0

t1

t2

t3

t4

Note that because of the agent footprint there are intervals where the agent can be in
two rooms.

Finally note that the agent is always in some room and thus AgentInARoom is
the always-true landscape.

16

Landmarks and maps: “slanted” temporal landscapes

So far, for most of the examples—except for that in Eq. (12)—all the temporal land-
scapes have consisted of a finite union of roofs. One thus wonders when a “slanted”
temporal landscape would be relevant in an application and what it would represent.

Consider the following picture:

1 2

(15)

An agent (red dot) travels, at constant velocity, within an indoor environment along
the red dashed path. The agent is equipped with a range limited sensor, such as a
LIDAR (blue disk) which emits a set of discrete laser beams. For each laser beam the
LIDAR gets a return whenever a laser beam hits a surface. The measurement is the
(possibly noisy) location of the surface along each beam (blue dots). We have denoted
with (1) and (2) two specific locations along the path. We depict with small blue dots
a possible set of sensor measurements—samples—along walls and columns (black
rectangles).

Further suppose that the agent is equipped with a fixed amount of onboard mem-
ory, so that not all the samples can be stored. When the buffer used to store samples is
full, past samples will be deleted to make space for new samples. If we identify each
sample with an integer i : N, we can define the predicate SampleInMempiq that will be
true over an interval rt1, t2s as long as the sample i is in the memory of the agent.

The temporal landscape for SampleInMempiq is clearly a roof over the interval
rt1, t2s where t1 is the instance when the sample i was first stored in memory and t2
is the instance of time when it was overwritten by a new sample (of course t2 “ `8
when there is enough memory so that no overwriting occurs).

The following predicate will have a “slanted” temporal landscape:

SamplesInMem “
ł

i

SampleInMempiq ,

For example, it might look like the following:

0
1

2
3

4
5

6
7

8
9

10

17

Initially, in the corridor, the number of samples is high and the memory will be fully
allocated. As new samples are obtained, old ones will be overwritten. Assuming
a constant velocity and number of samples per unit of time, we have a constant
overwriting so that a sample is in memory only over a constant size interval: thus
the landscape will be parallel to the time line. As the agent enters a part of the
environment that has fewer surfaces, the number of samples per unit time decreases,
and thus samples will persist in memory over longer and longer periods of time,
especially given that the environment becomes sparser as the agent moves left to
right. Once the agent start sensing the beginning of the right-most corridor, the
number of samples starts to quickly increase and thus the persistence of a sample
in memory decreases and returns to the maximum amount possible given by the
onboard memory, again shown as a landscape that is parallel to the time line.

4 Finite approximations and monitoring

We conclude with a short section discussing how temporal landscapes may appear
in practice. For example, autonomous agents may communicate using temporal
landscapes as a way of being predictable, e.g. for coordination or collision avoidance.
Temporal landscapes could also serve as a standard protocol within an agent. For
example, its predictive unit could issue a temporal landscape specifying the expected
occupancy of a given room, for use by a path-planning unit.

However temporal landscapes as we have discussed them involve an infinite
amount of data (any curve with slope in r0,8s). For representation and compu-
tation, it may be important to use finite approximations. In other words, rather than
express in perfect detail the set of intervals on which some statement will hold, it
might be convenient to express a finite set of intervals on which it will surely hold and
another finite set of intervals on which it will surely not hold. Writing ˝ for the in-
cluded intervals andˆ for the excluded intervals, the diagram would look something
like this:

˝

˝
˝

˝

ˆ

ˆ
ˆ

ˆ

The dotted line represents any temporal landscape that includes all the ˝’s and ex-
cludes all the ˆ’s.

This sort of finite information could be supplied by a monitor, which returns ˝’s
wherever the proposition was checked to hold and ˆ’s wherever it was seen to fail.
Such finite approximations (together with a special landscape for false) again form
a logical system: one can easily define connectives, as well as quantifiers over finite

18

samples. This provides the beginnings of a computationally tractable approach to the
logic of temporal landscapes.

5 Conclusion

In this paper, we have attempted to give an intuitive introduction to the logic of
temporal type theory in terms of temporal landscapes. On the one hand, these are
just collections of time intervals over which a proposition may be true. On the other,
they can be drawn as Lipschitz functions and hence visualized. They form a logical
system, where all of the connectives and quantifiers are defined by operations on
these Lipschitz functions.

After introducing these landscapes, we discussed a series of examples from the
domain of autonomous agents. These became fairly complex, e.g. considering an
agent’s position not just as a point but as a collection of points, each moving with
bounded speed, avoiding possibly moving obstacles, and storing recent LIDAR mea-
surements in a small-capacity memory that is constantly being overwritten. These
examples point to the great expressivity of temporal type theory.

In practice, TTT can serve as a sort of big tent, where calculations from model
checkers or ODE solvers can be embedded. While infinite in nature, we explained
how temporal landscapes can be finitely approximated. We thus hope to have shown
how TTT can be used to specify and guide algorithmic developments in autonomous
systems and any modeling environment in which time is an issue.

References

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. “The benefits of
relaxing punctuality”. In: Journal of the ACM (JACM) 43.1 (1996), pp. 116–
146.

[CH88] Thierry Coquand and Gérard Huet. “The calculus of constructions”. In:
Information and Computation 76.2-3 (1988), pp. 95–120.

[FS19] Brendan Fong and David I. Spivak. An Invitation to Applied Category Theory:
Seven Sketches in Compositionality. Cambridge University Press, 2019.

[Gie+03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott. Continuous lattices and domains. Vol. 93. Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, Cambridge, 2003,
pp. xxxvi+591.

[Hen00] Thomas A Henzinger. “The theory of hybrid automata”. In: Verification of
Digital and Hybrid Systems. Springer, 2000, pp. 265–292.

[Kam68] Johan Anthony Wilem Kamp. “Tense logic and the theory of linear order”.
PhD thesis. University of California, Los Angeles, 1968.

[MN04] Odet Maler and Dejan Nickovic. “Monitoring temporal properties of con-
tinuous signals.” In: FORMATS. 2004, pp. 152–166.

19

[Mou+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. “The Lean theorem prover (system description)”. In:
International Conference on Automated Deduction. Springer. 2015, pp. 378–
388.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a
proof assistant for higher-order logic. Vol. 2283. Springer Science & Business
Media, 2002.

[Pri67] Arthur N. Prior. Past, present and future. Vol. 154. Clarendon Press Oxford,
1967.

[SS19] Patrick Schultz and David I. Spivak. Temporal Type Theory: A topos-theoretic
approach to systems and behavior. Springer, Birkhäuser, 2019.

20

